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Abstract6

This study investigates soil organic carbon (SOC) response to land-use changes (LUC)7

across Europe by integrating field data from the LUCAS survey with satellite-based8

Corine Land Cover (CLC) data. Employing a dynamic approach, we observe that9

SOC accumulation following conversions from cropland to grassland or forest is gradual10

(10–20 years) yet substantial, whereas SOC losses due to conversions to cropland are11

more immediate (63% occurs within the first 1.5 years). We provide country-specific12

emission factors that enhance the precision of national greenhouse gas inventories. Our13

analysis of SOC changes since 1990 reveals significantly greater carbon sequestration14

compared to current national greenhouse gas inventory. These findings illustrate the15

need for region-specific parameters to estimate SOC changes and provide a ready-made16

solution for EU member states to comply with the LULUCF regulation on this aspect.17
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1 Introduction19

The amount of organic carbon in soils globally is two to three times greater than the amount of20

carbon in the atmosphere (Trumbore 2009). It thus plays a pivotal role in regulating atmospheric21

carbon dioxide levels, improving soil structure, and reducing greenhouse gas emissions (Lal 2004,22

Smith et al. 2008). As a major factor affecting terrestrial carbon balance, land-use changes (LUCs)23

can profoundly impact the global carbon cycle (Eggleston et al. 2006). Recognizing this, the24

European Union (EU) has introduced a distinct target for land-based net carbon removals, aiming25

for 310 million tonnes of CO2 equivalent by 2030, distributed as binding net removal national26

targets for the land use, land-use change and forestry sector (Hannes Böttcher et al. 2024).27

In this context, understanding and evaluating the impact of LUCs on soil organic carbon (SOC)28

is essential for developing effective strategies that balance the demands of food security, biodiversity29

conservation, and greenhouse gas emissions. Countries need robust data to set realistic targets,30

track progress, and implement policies that contribute to global carbon reduction goals. One of the31

main challenges in estimating the impact of LUC on SOC emission or sequestration comes from32

the need to combine soil carbon data of high quality with thoughtful statistical models to recover33

relevant impacts (Somarathna et al. 2017; Chen et al. 2015; Stanley et al. 2023).34

The empirical literature on the impact of LUCs on SOC can be divided into experimental and35

observational studies (Larsen et al. 2019). On the one hand, long-term field experiments allow36

researchers to consistently measure SOC variations and relate them to precisely controlled LUCs37

and land management. They are usually based on a limited set of plots and pedoclimatic conditions,38

so the associated results have high internal validity but low external validity (they are not readily39

transferable to other pedoclimatic conditions and land management practices). On the other hand,40

observational studies have higher external validity because the data are available for larger sets41

of pedoclimatic conditions, under actual land management and with a uniform methodology. The42

challenge for researchers is then to use consistent measures of SOC and to model unobserved43

variables that affect SOC and are correlated with LUC (e.g., climate, geology or local planning44

regulations). When omitted, such variables are known to confound the estimation of the causal45

impact of LUC on the plots that effectively experienced a LUC (Imbens and Rubin 2015).46

The present study estimates the impact of LUC on SOC across the EU, by leveraging observa-47

tional field data from the LUCAS survey. The control for confounding variables is operated from48

repeated soil measurements, under the assumption that these variables are mostly constant in time.49

This approach generally presents low precision because of the small number of LUCs observed be-50

tween two SOC measurements (De Rosa et al. 2024). We mitigate this drawback by employing a51

machine learning model based on satellite data to predict LUCs that occurred before the first soil52

measurement, and estimate their effects on SOC variations computed from LUCAS. The resulting53

combined dataset, which spans the period from 1990 to 2018, provides a precise and robust founda-54

tion for evaluating SOC responses to LUCs over time, without carrying over the omitted variable55
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bias which comes with the classical substitution of space for time in cross-sectional studies.56

We use this novel approach to produce upscaled estimates of SOC response over time for57

LUCAS points that effectively experience a LUC. Our results highlight the dynamic aspect of58

SOC variations, demonstrating that the effects of LUCs on SOC are neither uniform over time nor59

symmetric between LUCs. SOC dynamics following transitions from cropland to forest or grassland60

tends to be gradual, whereas SOC losses following conversion to cropland are much more immediate.61

In both cases, the change in SOC during the initial years is more significant and substantial, an62

effect that would otherwise be masked by smaller changes in later years in a non-dynamic setting,63

as in De Rosa et al. (2024).64

Compared to the results in the current literature (Poeplau et al., 2011), our findings show that65

the times required to reach SOC equilibrium are shorter and the total SOC loss is smaller. Com-66

paring our dynamic approach to the current “static” or “cross-sectional” approaches to estimating67

SOC changes shows that our dynamic approach generally yields smaller SOC loss for plots that68

experienced transitions to cropland and larger SOC accumulation for transitions from cropland to69

other land uses. The combination of field data with long time series of remote sensing data also70

captures greater variability across countries, allowing us to account for spatial heterogeneity and71

long-term SOC dynamics in reporting greenhouse gas (GHG) emissions or sequestration.72

We then use our estimates to report country specific emission factors, compliant with the IPCC73

guidelines and the LULUCF Regulation, and ready for use in national GHG inventories. Our74

dynamic Tier 2 approach estimates significantly higher carbon sequestration (572 Mtc) compared75

to the Tier 1 or cross-sectional Tier 2 approaches currently used in national inventories (76 Mtc).76

The higher estimates are primarily driven by increased soil carbon accumulation resulting from77

transitions from cropland to grassland (an additional 290 MtC), cropland to forest (an additional78

100 MtC), and forest to grassland (an additional 50 MtC) since 1990. These gains more than offset79

the greater soil losses associated with transitions from grassland to forest (an additional 150 MtC)80

and grassland to cropland (an additional 78 MtC). This higher estimate means that policies based on81

IPCC’s conservative estimates could be missing significant opportunities for carbon sequestration in82

land management. As a result, countries could adjust their land-use policies to enhance SOC storage83

through better and more targeted land-use choices, thereby making meaningful contributions to84

GHG mitigation.85

This study makes several key contributions to the existing literature on SOC and LUCs. First,86

we utilize the extensive LUCAS-soil dataset, integrating it with CLC data to create a comprehensive87

temporal and spatial representation of SOC changes across the EU. Compared to prior studies that88

primarily focused on static or cross-sectional analyses (Schneider et al. 2021), our research employs89

a dynamic approach to account for LUC history and the temporal evolution of SOC.90

Second, our study specifically focuses on marginal lands that have been voluntarily converted91

to another land-use, a sample that is often underrepresented in the literature despite being repre-92

sentative of actual LUCs (Guo and Gifford 2002, Don et al. 2011). By examining these marginal93
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lands, we provide novel insights into SOC dynamics under different LUC trajectories, highlighting94

the potential impacts of LUC on SOC in regions and land plots that are more susceptible to be95

converted in the future. In addition, our estimators take into account changes in practices actually96

carried out by land managers to adapt to variations in carbon in relation to their bio-climatic and97

economic conditions.98

Finally, our findings offer important policy implications by demonstrating the variable impacts99

of different LUCs on SOC. Several studies have underscored the need for tailored land management100

practices to maximize SOC retention and promote sustainability across the EU (Lal 2004, Tóth101

et al. 2007). Our study expands on these findings by providing a dynamic perspective, which102

better captures the temporal variations and long-term impacts of LUCs on SOC. The average SOC103

variation derived from the whole EU may mask the large differences between countries. This is why104

the EU has required country-specific estimates by 2027, which a majority of member states are still105

lacking. Our dynamic approach captures greater heterogeneity across countries, which emphasizes106

the need for region-specific policies that promote land-use practices enhancing SOC sequestration.107

2 Materials and Methods108

2.1 Soil Organic Carbon Variations109

In assessing Soil Organic Carbon variations (∆ SOC) from repeated soil measurements, we110

leverage topsoil samples from the LUCAS-soil dataset, a 10% subset of the LUCAS survey collected111

in 2009 (2012 in Bulgaria and Romania), 2015, and 2018. The LUCAS program, an initiative to112

track changes in land-use and cover throughout the EU, incorporated a soil module in the EU113

Member States. As the most extensive, uniform collection of topsoil in the EU, the LUCAS project114

collected soil samples and supporting data by ground observation at around 22,000 points across115

a variety of land covers during each survey. All samples were analyzed for physical and chemical116

properties in a single laboratory using the same analytical methods to enhance data consistency.117

Following De Rosa et al. (2024), we exclude sites with organic-rich soils (SOC > 160g C kg−1),118

those with over 5% CaCO3, and those missing either SOC values or particle size analysis, leaving119

16,680 points. LUCs are often inherently coupled with an alteration in bulk density. Therefore,120

we do not use the raw data on carbon content expressed in gC per kg of soil, but rather the total121

carbon stock in the first 20 cm expressed in tC per ha. This dependent variable is also more relevant122

as the carbon cost or benefit of a given LUC. Following De Rosa et al. (2024) and Pacini et al.123

(2023), total carbon stock is computed as follows:124

SOCt = OCt × BDF×DEPTH× (1− CVF), (1)

where SOCt is the total carbon stock in the first 20 cm of soil at time t in tC.ha−1 ; OCt is the125
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content of SOC in the fine soil in percentage in year t, BDF is the bulk density of the fine fraction126

of soil expressed in g.cm−3 as calculated in the following Equation 2; depth is 20cm; and CVF is127

the volume fraction occupied by coarse fragments in percentage from Equation 3 below.128

BDF =
MF

V F
=

BDR× (1− CVF)× ρC

ρC − BDR× CVF
(2)

CVF =
V C

V C + V F
=

CMF

ρC
BDF +

(
1− ρC

BDF

)
× CMF

. (3)

The term BDR is the bulk density data obtained from Panagos et al. (2024) who developed an129

high-resolution map based on 6,000 LUCAS samples; CMF is the mass fraction occupied by coarse130

fragments in percentage sampled in LUCAS samples for each point at the time of the first data131

collection (2009 or 2015); VC is the volume of the coarse fragments in cm3; VF is the volume of132

the fine fraction of soil in cm3; MF is the mass of the fine fraction of soil in g; ρC is the density of133

the coarse fraction, which takes the value of 2.6 g.cm−3.134

2.2 Recovering Land-Use Changes135

For LUCs, our methodology uses data from all five sequential waves of the LUCAS survey in136

2006, 2009, 2012, 2015, and 2018, instead of only the three LUCAS-soil waves of 2009 (2012 in137

Bulgaria and Romania), 2015, and 2018. However, the LUCAS data have two shortcomings. First,138

it is short in duration, as it only permits analysis of the impacts of LUCs on SOC over 9 years139

at best,1 while the literature suggests that it may take decades for soil carbon sequestration to140

reach equilibrium (Poeplau et al. 2011).2 Second, while LUCAS includes around 1 million points141

all over the EU, it only selects about one-forth of them in each wave due to its stratified sampling142

method (d’Andrimont et al. 2020). Therefore, most surveyed points do not have a full history of143

land use. To augment the temporal and spatial scope of our SOC response analysis, we adopt a144

machine learning model to predict ground-truthed LUCs - as observed in LUCAS - with CORINE145

Land Cover (CLC) data based on satellite observations and image treatments.146

The CLC dataset at 100m resolution is distinguished from LUCAS by its reliance on satellite147

imagery interpretation rather than direct ground observations, thus exhibiting an overall accuracy148

level of 85% (Büttner et al., 2004; Feranec et al., 2007)). Nonetheless, this accuracy varies sig-149

nificantly across different land cover classifications. Particularly, agricultural areas characterized150

by dense vegetation and intricate cultivation patterns face challenges due to subjective photo in-151

terpretation (Haines-Young and Weber 2006). Hence, we train a machine learning (ML) model152

by aligning land cover data from CLC for the years 2006, 2012, and 2018 with concurrent data153

1 Assuming that the earliest possible LUC happens in 2007.5, the middle point of 2006 and 2009 and that
the latest possible ∆ SOC is observed in 2016.5, the middle point of 2015 and 2018.

2 There is little empirical evidence to quantify how long it actually takes (see Falloon et al. 1998, Falloon
et al. 2000 , Tye et al. 2009 for limited long-run evidence).
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from the LUCAS survey. This process is further enriched by incorporating ancillary information154

on soil types from the European Soil Database, slope and elevation data from the European Digital155

Elevation Model, and proximity to the nearest road and city from the Euro Global Map, along with156

local land cover heterogeneity.157

The ML model is then utilized to estimate the probability of land-use being cropland, grassland,158

or forest for the years 1990 and 2000, a time-period not covered by LUCAS, and for the years 2006,159

2012, and 2018, in cases where land-use information is missing from LUCAS. Specifically, we assign160

the land cover category with the highest probability to each point. If the highest probability among161

cropland, grassland, or forest does not exceed 50%, we label the points as “Other”. We achieve162

70% accuracy for cropland, 65% for grassland, and 67% for forest. In Section A.3, we show the163

main results are robust to a bootstrap style sensitivity test (Rosenbaum, 2005).164

2.3 Time Lag between LUC and ∆ SOC165

Armed with the ML predictions, we define LUC from X (eg. grassland) to Y (eg. cropland),166

hereafter LUXY , a LUCAS-soil point which is set as X in all years prior to the LUC and as Y in167

all years after the LUC. There are a few missing values in 1990, 2009, and 2015, where neither168

CLC nor LUCAS data is available. This definition gives us 3,751 points with a single LUC, with169

75% having occurred prior to the first LUCAS soil survey in 2009 (Figure A1) but only 6% having170

occurred prior to 2000.171

We define an observation of the SOC change by ∆SOCt1,t2 , where t1 is the year of first observed172

SOC, t2 is the year of the last observed SOC, and ∆SOCt1,t2 is the difference of the SOC between173

the two observations. As illustrated in Figure 1, we have at most two observations for each point:174

∆SOC09,15 between 09 and 15, ∆SOC15,18 between 15 and 18. If SOC in 2015 is not available, we175

have only one observation and use ∆SOC09/12,18 between 09/12 and 18 instead.176

Because some LUCAS-soil points can have multiple observations, 3,751 points yield 10,116177

observations of ∆SOCt1,t2 for all LUCs, the majority being from cropland to grassland.178

Figure 1: Illustration of the Three Different SOC Variations

We then exploit the timing of events to normalize the different numbers of years underlying179

∆SOCt1,t2 . If LUC occurred prior to the first measurement of SOC, the time length over which the180
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change in SOC is taking place is trivially the time difference between the two soil survey: t2 − t1.181

If LUC takes place in between two SOC measurements, the difference in SOC is thus entirely182

attributed to the LUC. The time length over which the change in SOC is taking place is therefore183

the time difference between LUC (tLUC) and the second measurement of SOC: t2 − tLUC . The184

underlying assumption is that SOC was constant until LUC took place, that is between t1 and185

tLUC . Formally, we define ∆t = min(t2 − t1, t2 − tLUC). The annual average soil change is then186

calculated as: ∆SOCt1,t2 = (SOCt2 − SOCt1)/min(t2 − t1, t2 − tLUC).187

Since our observations often start several years after LUCs, we need to define the number of years188

passed since LUC for each observation. If LUC occurs prior to the first measurement as illustrated189

in Figure 2 (a), we assume the observed year of SOC change to be the midpoint of the interval190

between the two SOC measurements. The number of years passed since LUC is then defined as191

(t1+ t2)/2− tLUC . If LUC takes place in between two SOC measurements as illustrated in Figure 2192

(b), we assume the observed year of SOC change to be the midpoint of the interval between the LUC193

and the second SOC measurement. The number of years passed since LUC is then defined as (tLUC+194

t2)/2− tLUC . Formally, we define Years Passed = max ((t1 + t2)/2− tLUC , (tLUC + t2)/2− tLUC).195

Table 1 shows the descriptive statistics of the processed data for all 6 types of LUCs.196

(a) LUC before two SOC measurements

(b) LUC between two SOC measurements

Figure 2: Illustration of the computation of Year Passed

2.4 Cumulative ∆ SOC from LUCs197

Previous computations allow us to relate yearly snapshots of ∆ SOC to LUCs. To derive the198

cumulative change of SOC for a given LUC, we need to calculate the average ∆ SOC for each time199

interval and to sum them for all the years before the equilibrium.200
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Table 1: Summary Statistics by Land-Use Change

LUC: GC FC FG CG CF GF

Initial SOC 41.5 32.7 47.8 51 65.6 56.8
(26.1) (19.3) (35.4) (35.7) (53.3) (38.1)

Final SOC 39.9 32.8 49.8 53.4 71.1 61
(22.3) (18.9) (34.7) (37.5) (54.8) (43.5)

∆SOC per year -.582 .108 .65 .778 1.37 1.25
(5.89) (4.16) (7.95) (7.38) (10.7) (8.38)

N 704 450 775 1054 386 382

Standard errors in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Note: The table lists the mean and the standard deviation for 6 types of LUC, where G stands for
Grassland; F stands for Forest, C stands for Cropland. Initial SOC is the carbon stock of the initial
land-use in tC.ha−1. Final SOC is the carbon stock of the final land-use in tC.ha−1. ∆SOC per year is the
annual average soil carbon change in tC.ha−1.year−1.

We thus define the time interval of each ∆SOCt1,t2 observation relative to the timing of LUC.201

Following Section 2.3, the relative timing of the first observation of SOC is T1 = min(t1, tLUC)−tLUC202

years since LUC and the second observation of SOC is T2 = t2 − tLUC years since LUC. Since203

different time intervals can overlap for different sites (Figure 3), we define the total average change204

of ∆SOC per year in time interval [ta, tb] to be the weighted average of all ∆SOCi,T1,T2 per year205

that contain the time interval [ta, tb]:206

∆ŜOCXY,ta,tb =
1

n

n∑
i=1

∆SOCi,T1,T2

for all ∆SOCi,T1,T2 such that T1 ≤ ta, T2 ≥ tb and i ∈ LUXY

(4)

Take the example of Figure 3, there are three observations for land-use changes from grassland to207

cropland: ∆SOCa, ∆SOCb, and ∆SOCc. For the time interval [0, 1], ∆ŜOCGC,0,1 =
1
3(∆SOCa,0,8+208

∆SOCb,0,4+∆SOCc,0,1) ∗ (1− 0). Similarly, ∆ŜOCGC,1,4 =
1
2(∆SOCa,0,8+∆SOCb,0,4) ∗ (4− 1) for209

the time interval [1, 4]. Using this definition, we derive the change of SOC based on ∆ŜOCXY,Ta,Tb
210

calculated in Equation (4) for each LUC XY and each time interval [ta, tb] that are separated by211

year 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 14, 15, 17, 20, 23.212

2.5 Modeling spatial heterogeneity in LUC-related SOC changes213

The dynamics of SOC response to LUCs can vary dramatically across climate zones and Eco-214

regions, given the large spatial extent of our analysis. To capture the heterogeneous response of215

SOC to LUCs across regions, we include the level of SOC, which can heavily influence the dynamics216

of ∆SOC following LUC (De Rosa et al. 2024). Thus, we estimate the following regression for each217
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Figure 3: Illustration of Time Interval

LUC type:218

∆SOCi,t1,t2 =αtTime Intervali,ta,tb + βtTime Intervali,ta,tb ∗ Final SOCi,t2

+ γtTime Intervali,ta,tb ∗ (Final SOCi,t2)
2 + ϵi, (5)

where ∆SOCi,t1,t2 is the annual change in the soil organic carbon at point i between t1 and t2 as219

defined in section 2.3, Time Intervali,ta,tb is a dummy indicator taking value 1 if the time interval220

[ta; tb] from the list of non-overlapping time intervals defined in section 2.4 is included in [t1; t2]221

and taking value 0 otherwise, and Final SOCi,t2 is the carbon stock of the land-use at point i and222

time t2 (always the final land use), assumed to be at equilibrium given the fast convergence of223

SOC following LUC in all six cases.3 To the extent that the final level of SOC heavily influences224

the dynamics of ∆SOC following LUC (De Rosa et al. 2024), we also include the interaction of225

Time Intervali,ta,tb and Final SOCi,t2 as well as its squared term.226

Some time intervals [ta; tb] are only supported by a few points, making the coefficients of equa-227

tion (5) subject to over-fitting and low precision. To prevent this from happening, time intervals228

supported by fewer than 50 observations are merged with their neighbors prior to the estimation,229

until this all non-overlapping time intervals for each LUC XY are supported by at least 50 obser-230

vations. In addition, having several dummy variables equal to 1 for the same data point i (e.g.,231

∆SOCa in Figure 3) would bias the coefficients of equation (5) downwards. To avoid this, all232

points i concerned are replicated so that each replicate has a single dummy variable equal to 1.233

For example, ∆SOCb in Figure 3 would be duplicated, with one replicate receiving value 1 for234

Time Intervali,t0,t1 and the other receiving value 1 for Time Intervali,t1,t4 .235

From the estimated OLS coefficients from (5), we then predict ∆ŜOCi,ta,tb for each LUCAS236

point according to the different land uses. We assume the equilibrium year to be the first year237

when ∆SOC turns from positive to negative (or vice versa) for the first time.238

3 Final SOC is used instead of initial SOC, because we do not observe the initial SOC if LUC took place
before the first measurement at point i.
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3 Results239

3.1 ∆ SOC Response to LUCs240

We group the raw average ∆ SOC estimates by the ”years passed” and compute their standard241

deviations from sample variations. Figure A2 displays the results across all types of LUCs. Our242

large sample size allows us to detect small changes in SOC with high precision.243

These raw averages are difficult to interpret because the time intervals covered by each point are244

not consistent, even for a given value of ”years passed”. The general picture is however consistent245

with our main results (with non-overlapping time intervals) presented in the next section. After246

transitions from grassland or forest to cropland, SOC decreases rapidly and reaches equilibrium247

within a relatively short time (i.e., less than few years, Figure A2a and A2c). In contrast, after248

cropland is converted to grassland or forest, and grassland to forest, SOC accumulates more gradu-249

ally and over a longer period (about 10 years in Figure A2b, Figure A2d, and Figure A2f). Lastly,250

SOC changes following conversions from forest to grassland display no significant trend, with only251

minor insignificant fluctuations over time (Figure A2e).252

From the computation described in Subsection 2.4, our main results are displayed in Figure253

4 for all six types of LUC, where the shaded areas indicate the total amount of ∆ŜOCXY,ta,tb in254

each time interval [ta, tb], and the range indicates 95% confidence intervals.4 There seems to be255

rapid soil loss following the conversion from other land uses to cropland in the first 1.5 years – SOC256

decreases by 7 tC.ha−1 following LUC from grassland to cropland, and 11.3 tC.ha−1 following LUC257

from forest to cropland (Figure A1). The changes in SOC are negligible in the subsequent periods,258

with at most 37% of cumulated ∆SOC for the LUC (Figure 4a, 4c and Table 2).259

On the other hand, we observe more gentle SOC accumulation following the conversion from260

cropland to other land uses. The initial soil accumulation in the first 1.5 years is smaller — SOC261

increases by 2.8 tC.ha−1 following LUC from cropland to grassland, and 8.6 t C ha−1 following262

LUC from cropland to forest, that is respectively 12 and 20% of cumulated ∆SOC (Table A1).263

But the impacts of LUC on SOC continue for longer duration, with sizeable soil accumulation until264

at least the 20th year (Figure 4b, 4d). Soil accumulation following LUC from grassland to forest265

presents a similar pattern. SOC increases by 8.38 tC.ha−1 in the first 1.5 years, with sizeable soil266

accumulation until the 23rd year (Figure 4f). We observe no substantial change in SOC following267

a transition from forest to grassland as shown in Figure 4e.268

These results improve the existing research based on observational data. Using the same LUCAS269

data, De Rosa et al. 2024 calculates the average changes of SOC in gC.kg−1.year−1 between 2009270

and 2018 for GC and CG transitions. They find surprising results: the average change of SOC271

is much smaller right after LUC than 5–10 years later, and GC leads to positive ∆ SOC. This272

4 The 95% confidence interval is calculated as (mean(∆ŜOCi,Ta,Tb
) ± 1.96 × standard deviation

(∆ŜOCi,Ta,Tb
)) for each time interval [ta, tb].
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(a) Grassland to Cropland (b) Cropland to Grassland

(c) Forest to Cropland (d) Cropland to Forest

(e) Forest to Grassland (f) Grassland to Forest

Figure 4: ∆ SOC by time interval since LUC
Note: The Figure shows the soc variations predicted for each interval following a LUC. The values are
computed from Equation 4.
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is likely because frequent changes between temporary grassland and cropland, as well as land-use273

determination errors, blur the picture. Using CLC data, we focus on changes between permanent274

grassland and cropland, both reliably identified as such over the long term. This may explain why,275

despite using the same raw data on SOC, our results on ∆SOC and its first derivative have the276

expected signs (e.g. Poeplau et al. 2011). Poeplau et al. (2011) similarly find rapid soil loss in277

the initial years following other land uses to cropland, but only gradual soil accumulation following278

LUC of cropland to other land uses. To the contrary of Poeplau et al. (2011) however, our results279

show the soil loss reach the new equilibrium mostly within the first 1.5 years. Poeplau et al. (2011)280

mostly relies on paired sites instead of the more reliable chronosequences and its original studies281

have a lower time-resolution (3-6 years). For these reasons, and because we benefit from a larger282

sample size, we would argue that our figures are more accurate for the 0-20 cm horizon. However,283

the average depth of the studies reviewed by Poeplau et al. (2011) is larger than 20 cm, which could284

partly explain their slower time dynamics.285

Table 2 displays the cumulated change in both absolute value and percentage relative to the286

initial SOC following all 6 types of LUCs (the cumulative sum stops at the first time-interval when287

the sign of ∆SOC changes or at 20 years, whichever occurs the soonest)5. Take the example of288

cropland to grassland in Figure 4b, the equilibrium is reached in the 20th year when ∆SOC becomes289

negative for the first time. Our estimates of %∆SOC are similar to the results of Poeplau et al.290

(2011), except for transition from grassland to forest. In absolute values, our estimates are much291

larger the average ∆SOC reported in the national GHG inventories from 1990 to 2021.292

Table 2: ∆SOC across LUCs

LUC ∆SOC Initial SOC %∆SOC %∆SOC Poeplau et al. 2011 ∆SOC GHG
CF 43.8 ± 19.9 66 66 ± 30 22.4 ± 10.4 16.8
CG 22.5 ± 7.4 53 42 ± 14 39.8 ± 11 9.6
GF 30.1 ± 11.3 59 51 ± 19 -4.0 ± 5.7 -0.1
FG 4.4 ± 17.9 46.9 9 ± 38 -2
FC -12.6 ± 17.0 32.8 -38 ± 52 -31.4 ± 20.4 -21
GC -11.1 ± 4.8 41.3 -27 ± 12 -36.1 ± 4.6 -10.9

Note: the table displays ∆ SOC (tC.ha−1 ± 95% Confidence Interval), the percentage change of ∆ SOC
(%± 95% Confidence Interval), the percentage change of SOC reported in Poeplau et al. 2011 over 20
years, and the change of SOC reported from the national GHG inventory following all six types of LUC
(%± 95% Confidence Interval, where G stands for Grassland; F stands for Forest, C stands for Cropland.

5 We use the bootstrapping method to obtain 95% confidence intervals. Taking the example of all points
from cropland to grassland, we draw random samples with replacement from the dataset and calculate the
absolute value of ∆SOC until a change in sign and within 20 years following the LUC. This process is
repeated 1000 times, and the standard deviation is derived from the distribution of the 1000 absolute values
of ∆SOC. The 95% confidence interval is then calculated as (mean±1.96 × standard deviation).
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3.2 Country-level ∆ SOC293

The alteration of Figure A2 with a few merged intervals on which we estimate Equation 2.5 is294

presented in Figure A4. Table A2 to A7 in the Appendix show that the coefficients of Time Interval295

become smaller in magnitude and insignificant in later years, since the impact of LUC on ∆SOC296

decreases over time. Most coefficients of Time Interval interacted with the final SOC are significant297

and positive, indicating those land with higher levels of SOC have larger ∆ SOC following LUC.298

This is consistent with previous findings from De Rosa et al. (2024) that plots with higher level of299

SOC tends to gain more from LUC.300

In order to downscale the EU-scale values from Table 2, we use the estimated Equation (5) to301

predict the ∆ŜOCi,ta,tb in each time interval [ta, tb], using the average final SOC for each country302

and LUC type and the coefficients of Time Interval for each LUC type (listed in Table A2 to A7303

in the Appendix). Summing up the predicted ∆ŜOCXY,ta,tb in each time interval [ta, tb] up until304

the first year when the sign changes, we derive the total change of ∆SOC for country and LUC305

type. These initial results seem rather unstable for all LUCs involving forests (Table A12). For306

some countries, either with a small number of plots for the given LUC or with an extremely low307

or high average SOC, the predicted values are too large to be realistic. Our interpretation is that308

three factors generate unstable predictions: 1) a small sample size for the LUC at EU level which309

may overfit the data for some time intervals; 2) a small sample size in the country, which may310

results in an average final SOC out of the calibration range of the model; and 3) inconsistencies311

in LUCAS-soil data with regards the inclusion of forest litter in the SOC values (Ran et al. 2010).312

Note that projected values at EU-level (see Figure A5) are sensible and similar to measured values313

(Figure A2), which is consistent with this interpretation.314

Because of this instability, we forgo down-scaling for all LUCs involving forest, and recommend315

the use of values in Table 3 instead, where we country-level estimates with average ∆SOC values316

across the Europe Union derived from Figure A2 for all LUCs involving forest. Note that the CG317

estimates are surprisingly high in Latvia and the Netherlands. Grasslands in these countries have318

unusually high carbon stocks, possibly related to the abundance of wetlands and the difficulty to319

distinguish them from non-wet grasslands. Alternatively, the small sample sizes in these countries320

could also be an explanation. To the contrary, CG estimates are counter-intuitively negative in321

three mediterranean countries: Spain, Greece and Cyprus. The abundance of permanent croplands322

such as olive groves in these countries may explain this peculiarity. Conversion of irrigated cropland323

to rainfed grassland could also lead to SOC losses.324

3.3 Comparing cross-sectional and dynamic approaches325

It is worth noting that, to the contrary of the approach followed by most GHG inventories,326

our estimates of ∆SOC following LUC from X (e.g. cropland) to Y (e.g. grassland) are not the327

exact opposite of ∆SOC following the LUC from the opposite direction. This is true both for the328
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cumulated ∆SOC (Table 3) and the time-dynamics (Figure A2). The time-dynamics have been329

discussed in section 2.4. The differences in cumulated ∆SOC highlight that the plots that change330

in one direction are not comparable with those which change in the opposite direction. Based on331

our estimates, it seems that grasslands actually being converted to croplands have less carbon to332

loose on average than croplands actually being converted to grasslands (Table 3).333

The “dynamic” estimates in Table 3, which leverage both the panel structure of the data and334

a reconstruction of LUC beyond the LUCAS survey, can then be compared with classical “static”335

or “cross-sectional” ones. To do so, we calculate the difference in SOC between each grassland336

point and its five nearest croplands, a protocol similar to Schneider et al. (2021) except that we do337

not control for soil chemical attributes and climate. Our replication results of Schneider’s protocol338

are displayed in Table A8. It yields similar estimates for Belgium and Estonia, the two countries339

for which the precise values are displayed in Schneider et al. (2021).6 Note that despite the static340

approach is not immune to surprisingly large estimates when performed on a per country and per341

LUC basis (e.g., −71 and −95 tC.ha−1 for GC transitions in Croatia and Sweden respectively).342

Table A9 shows the difference in ∆SOC estimated using our “dynamic” and “static” approaches.343

In general, our “dynamic” approach tends to yield higher increases and lower decreases in SOC344

than the “static” approach. There are larger SOC accumulation following LUCs from cropland345

or grassland to forest, and smaller SOC loss following LUCs from grassland or forest to cropland,346

and forest to grassland. The only counter-example is cropland to grassland where the “static”347

approach tends to predict higher accumulation. This discrepancy could again reflect the differences348

in considered plots. Indeed, the average SOC of plots that remain cropland throughout our sample349

is 36.7 tC.ha−1, counter-intuitively much lower than the average initial SOC is 51 tC.ha−1 and 65.6350

tC.ha−1 for plots that experience LUCs to grassland and forest respectively, as illustrated in Table351

1. In this regard, the results obtained under this approach can better reflect the potential impacts352

of both past and potential LUCs on ∆SOC.353

3.4 Comparison with officially reported values since 1990354

To compare our results more directly with GHG inventories, panels (a) and (b) of Figure 5355

consider the same LUCs from GHG inventories. The differences between the aggregated ∆ SOC356

values are driven solely by the assumed impact of LUCs on ∆ SOC (the total area which undergoes357

a given LUC is obtained from GHG inventories in both cases), and show strong disagreement358

between the two methods. From a release of −33 MtC in the GHG inventory, the UK shows a net359

sequestration of +76.1 MtC, mainly due to our higher value for sequestration from crop to grassland360

(+80 MtC in total) and a lower loss from grassland to crop (+20 MtC in total). For France, our361

estimates also reverse the net, with an estimated sequestration of +80 MtC from cropland to362

grassland, −25 MtC from grassland to cropland, while we find additional sequestration of +50363

6 For Belgium SOC is 27.2 tC.ha−1 (Schneider et al. 2021) vs 34.1 tC.ha−1; For Estonia SOC is 5.2
tC.ha−1 (Schneider et al. 2021) vs 18.6 tC.ha−1)
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and +30 MtC for forest to grassland and crop to forest transitions, respectively. The reversal for364

Romania is almost exclusively due to our lower value for carbon emissions from a grassland to crop365

transition (−9.3 tC.ha−1), whereas the GHG inventory considers a sequestration of +7 tC.ha−1)366

for this transition.367

(a) Current GHG Inventory (b) Our Dynamic Approach

Figure 5: ∆ SOC in MtC across some countries of EU, 1990-2018
Note: the Figure shows the total impacts of LUCs on SOC according to (a) current GHG inventory and (b)
our dynamic approach. The two maps consider the same LUCs from GHG inventories.

At the EU scale, we estimate a much higher total SOC increase than GHG inventories (+ 494368

MtC, see Table 4). The difference is mostly driven by the increased value of carbon sequestration369

from crop to forest (+100 MtC), crop to grassland (+101 MtC), and grassland to forest (+253370

MtC) than in the GHG inventory. The latter comes from the common assumption in GHG inven-371

tories, in line with the IPCC Guidelines (Eggleston et al. 2006), that forests and grasslands have372

comparable SOC stocks. This is at odds with our observation based on LUCAS measurements that373

GF transitions generate an average cumulated increase of 30 tC/ha over the first 20 years. The374

other differences are driven by a combination of higher estimated cumulated ∆SOC (Table 2) and375

a difference in time dynamics: most GHG inventories assume linear changes which take 20 years to376

be completed whereas our estimates suggest that changes are concentrated over the first 1–5 years,377

and generally stop after 10–20 years.378
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Table 4: Total ∆ SOC (MtC) since 1990 under “Dynamic” Approach and Current Inventory

Country G to C F to C F to G C to G C to F G to F Total

“Dynamic” Approach -139.6 -10.7 5.6 301.5 162.9 252.4 572.11

Current Inventory -165.2 -18.1 -2.5 199.9 62.5 -0.5 76.1
Note: the table display total ∆ SOC (MtC) under “dynamic” approach and current inventory, based on

LUC changes since 1990 following all 6 types of LUC, where G stands for Grassland; F stands for Forest, C

stands for Cropland.

3.5 Main limits379

The most important limit in our approach is intrinsic to the use of LUCAS-soil measurements:380

despite all their advantages, they are limited to the 0–20 cm horizon. This should be sufficient to381

capture the big picture: 60–70% of total SOC is in the first 20 cm and more than 80% of SOC382

present at below 20 cm is not very reactive (average age higher than 10 years) (Balesdent et al.,383

2018). One could expect changes in SOC to be larger and slower for the entire soil profile, but the384

possibility of counter-intuitive redistributions as demonstrated for no/low till (Haddaway et al.,385

2017) cannot be ruled out.386

Sample size is also a strong limit when investigating time-dynamics. We have 11 non-overlapping387

time intervals, six types of LUC and 28 countries, which generate risks of overfit and out-of-range388

predictions. To limit these risks, we merged intervals with too few data and use country-average389

SOC for predictions (less likely to be out-of-range than point-level SOC values). However, as we390

can see for LUCs involving forests, this may not yet be fully satisfactory. New LUCAS-soil waves391

will hopefully reduce this problem over time, although the proposed higher sampling intensity for392

LUCAS-soil would certainly help.393

We can also expect that farming practices related to carbon management may differ from the394

results obtained from a model that does not really take practices into account, or that marginal395

plots that experience a LUC over the period are different in terms of geology, initial carbon stocks,396

or practices that other plots that do not experience a LUC.397

4 Conclusion398

This study underscores the significant impact of land-use changes (LUCs) on soil organic carbon399

(SOC) dynamics across European Union (EU). By integrating field data from the LUCAS survey400

with satellite data from Corine Land Cover (CLC), we developed a robust methodology to estimate401

SOC variations from observational data. Our method combines the best of the available EU data to402

ensure broad coverage of pedo-climatic conditions with actual land management. We also restrict403

our estimation to land plots that experienced a LUC over the period, which is shown to be important404

when the impacts are heterogeneous. Time-invariant confounding variables are accounted for by the405
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use of repeated soil measurements, which we enhance by coupling them with a Machine Learning406

(ML) model on a 28-year historical analysis of LUC.407

The dynamic approach adopted in this study demonstrates that the impacts of LUC on SOC408

are larger than previously documented, especially for conversions to forest. Within the first 20409

years, SOC increases by 37 tC.ha−1 following a transition from cropland to forest, and 26 tC.ha−1
410

following a transition from grassland to forest. In those cases of LUCs, the estimates are larger411

than previous findings in Poeplau et al. (2011). These insights are crucial for formulating effective412

land management policies aimed at enhancing carbon sequestration and mitigating climate change.413

Furthermore, our findings reveal that the SOC response to LUC varies considerably across414

different types of land-use transitions and regions, highlighting the necessity for country-specific415

emission factors in compliance with IPCC guidelines. Although our proposal for such factors are416

still fragile for LUCs involving forests due to small sample sizes, they seem reliable for changes417

between cropland and grassland. In countries where a small sample size questions the genericity of418

the emission factor, the regional average can be used instead.419

In conclusion, this study contributes to the growing body of literature on SOC dynamics fol-420

lowing LUCs by providing a comprehensive, data-driven analysis of LUCs across the EU. The421

methodologies and findings presented here can aid policymakers in setting realistic targets for422

soil-based carbon sequestration, tracking progress, and implementing strategies that balance food423

security, biodiversity conservation, and GHG emissions. Future research should focus on refin-424

ing these methods and expanding the dataset to include a larger sample of soil organic carbon425

measurements, especially for countries with small territories.426
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Appendix A: Appendix518

A.1 Supplement Tables and Figures519

Table A1: Cumulative ∆ SOC by the Final Year of each Time Interval

Year G to C F to C F to G C to G C to F G to F

1.5 -7.0 -11.3 0.1 2.8 8.6 8.4

3 -7.9 -11.7 0.9 3.8 10.1 8.6

4.5 -8.7 -12.0 1.1 4.6 12.2 9.3

6 -9.2 -12.2 1.4 5.2 14.2 9.8

7.5 -9.8 -12.6 2.4 5.8 15.5 10.6

9 -9.9 3.7 6.5 17.7 11.9

10.5 -10.2 4.4 7.2 19.7 13.3

12 -11.2 7.7 19.9 14.5

14 9.0 21.1 18.5

15 10.0 22.0 20.4

17 15.1

20 22.6 36.7 25.4

23 43.8 30.1
Note: the table show the cumulative ∆SOC (in tC ha−1) by the final year of each time interval until SOC
reaches the equilibrium or 6 LUC type.
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Figure A1: Distribution of LUC timings

Note: N(LUC XY) is the number of LUCAS soil points experiencing a single change from X

to Y over the sample period and N(∆SOC XY) is the number of ∆SOC measurements for

these points.
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(a) Grassland to Cropland (b) Cropland to Grassland

(c) Forest to Cropland (d) Cropland to Forest

(e) Forest to Grassland (f) Grassland to Forest

Figure A2: ∆ SOC by number of years passed since LUC
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Table A2: Impact of Cropland to Grassland change on Soil Organic Carbon

Dependent Variable: Absolute change in SOC
(1) (2) (3)

No X X SOC X SOC2

Time Interval 0 - 1.5 -1.66 .0132 .00144∗∗∗

(1.01) (.0335) (.000183)
Time Interval 1.5 - 3 -1.78 .0512∗ -.0000655

(1.11) (.029) (.00013)
Time Interval 3 - 4.5 -2.7∗∗∗ .0765∗∗∗ -.000157

(.94) (.0254) (.000119)
Time Interval 4.5 - 6 -2.63∗∗ .0705∗∗ -.000141

(1.06) (.0279) (.000126)
Time Interval 6 - 7.5 -1.75∗∗ .0422∗∗ -.0000454

(.74) (.0191) (.0000971)
Time Interval 7.5 - 9 -1.73∗∗ .0392∗∗ 4.15e-06

(.755) (.0186) (.0000919)
Time Interval 9 - 10.5 -1.67∗∗ .0362∗ .000018

(.8) (.0193) (.0000937)
Time Interval 10.5 - 12 -1.98∗ .0466 -.0000802

(1.04) (.0295) (.000181)
Time Interval 12 - 14 -3.07∗∗∗ .0377 .00034∗∗∗

(1.03) (.026) (.00013)
Time Interval 14 - 17 -2.61∗∗∗ .035∗ .000264∗∗∗

(.889) (.0202) (.0000859)
Time Interval 17 - 23 -.871 -.0197 .000305∗∗

(1.87) (.0359) (.000126)

Observations 2697
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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Table A3: Impact of Grassland to Cropland change on Soil Organic Carbon

Dependent Variable: ∆ SOC
(1) (2) (3)

No X X SOC X SOC2

Time Interval 0 - 1.5 -2.96∗∗ -.069∗ .000486∗∗

(1.24) (.0392) (.000236)
Time Interval 1.5 - 3 -1.69 .0371 -.000186

(1.04) (.034) (.000213)
Time Interval 3 - 4.5 -1.68∗ .0384 -.000197

(.936) (.0317) (.000203)
Time Interval 4.5 - 6 -1.95 .0696 -.000536

(1.4) (.0631) (.000609)
Time Interval 6 - 7.5 -2.49∗∗∗ .096∗∗∗ -.000824∗∗∗

(.855) (.0337) (.000277)
Time Interval 7.5 - 9 -2.56∗∗∗ .109∗∗∗ -.00091∗∗∗

(.947) (.0367) (.000296)
Time Interval 9 - 10.5 -2.69∗∗∗ .108∗∗∗ -.000891∗∗∗

(.979) (.0377) (.000301)
Time Interval 10.5 - 12 -2.83∗∗ .101∗∗ -.000866∗∗∗

(1.1) (.042) (.00032)
Time Interval 12 - 14 -2.12 .0668 .000227

(1.33) (.0559) (.000504)
Time Interval 14 - 17 -1.23 .0178 .000537

(1.16) (.0497) (.000469)
Time Interval 17 - 23 .467 -.0539 .00103

(3.77) (.195) (.00225)

Observations 1860
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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Table A4: Impact of Cropland to Forest change on Soil Organic Carbon

Dependent Variable: Absolute change in SOC
(1) (2) (3)

No X X SOC X SOC2

Year Passed 0 - 3 -3.47 .0446 .000142
(2.24) (.0465) (.000171)

Year Passed 3 - 4.5 -5.18∗∗ .0795∗ .000031
(2.21) (.045) (.000166)

Year Passed 4.5 - 6 -5.2∗∗ .0796∗ .0000312
(2.21) (.045) (.000166)

Year Passed 6 - 7.5 -2.3 .0153 .000248∗

(1.59) (.0343) (.000135)
Year Passed 7.5 - 9 .43 -.0369 .000441∗∗∗

(1.67) (.0343) (.000128)
Year Passed 9 - 10.5 .458 -.0439 .000475∗∗∗

(1.68) (.035) (.00013)
Year Passed 10.5 - 12 .501 -.0672 .000632∗∗

(2.3) (.0575) (.000268)
Year Passed 12 - 14 5.86∗∗ -.273∗∗∗ .00216∗∗∗

(2.98) (.0934) (.000582)
Year Passed 14 - 23 3.83 -.192∗∗∗ .00168∗∗∗

(2.4) (.0723) (.00043)

Observations 1153
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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Table A5: Impact of Forest to Cropland change on Soil Organic Carbon

Dependent Variable: Absolute change in SOC
(1) (2) (3)

No X X SOC X SOC2

Year Passed 0 - 3 .794 -.092∗∗ .00118∗∗∗

(.899) (.0425) (.000414)
Year Passed 3 - 4.5 -.112 -.0428 .000934∗∗

(.891) (.0417) (.00041)
Year Passed 4.5 - 6 -.0825 -.0451 .000949∗∗

(.907) (.0423) (.000414)
Year Passed 6 - 7.5 -.0498 -.0421 .000863∗∗

(.73) (.0357) (.000371)
Year Passed 7.5 - 9 1.09 -.115∗∗∗ .00211∗∗∗

(.664) (.0284) (.000238)
Year Passed 9 - 10.5 .835 -.103∗∗∗ .00203∗∗∗

(.678) (.029) (.000241)
Year Passed 10.5 - 12 -1.79 .0495 .000199

(1.64) (.106) (.00156)
Year Passed 12 - 14 -4.45∗∗∗ .193∗ -.00127

(1.61) (.101) (.00142)
Year Passed 14 - 23 -4.57∗∗∗ .212∗∗ -.00172

(1.5) (.0899) (.00121)

Observations 1307
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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Table A6: Impact of Forest to Grassland change on Soil Organic Carbon

Dependent Variable: Absolute change in SOC
(1) (2) (3)

No X X SOC X SOC2

Year Passed 0 - 3 -4.67∗∗∗ .121∗∗∗ -.000256∗∗

(.885) (.0229) (.000104)
Year Passed 3 - 4.5 -1.72∗ .0525∗∗ -.00015

(.894) (.024) (.000105)
Year Passed 4.5 - 6 -2.27∗∗ .0588∗∗ -.0000185

(.985) (.0276) (.000112)
Year Passed 6 - 7.5 -1.89∗∗ .0564∗∗∗ -.0000705

(.797) (.0202) (.0000867)
Year Passed 7.5 - 9 -2.45∗∗∗ .0862∗∗∗ -.000276∗∗∗

(.837) (.021) (.0000892)
Year Passed 9 - 10.5 -2.4∗∗ .0783∗∗∗ -.000238∗∗

(.94) (.0243) (.0000972)
Year Passed 10.5 - 12 -1.13 .0204 -.0000262

(1.46) (.0371) (.000157)
Year Passed 12 - 14 -2.98 .0546 .000242

(1.88) (.0586) (.000368)
Year Passed 14 - 23 -3.15∗ .0595 .000219

(1.84) (.0571) (.000361)

Observations 2072
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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Table A7: Impact of Grassland to Forest change on Soil Organic Carbon

Dependent Variable: Absolute change in SOC
(1) (2) (3)

No X X SOC X SOC2

Year Passed 0 - 3 -4.09∗∗∗ .0928∗∗ -.0000372
(1.58) (.0401) (.000192)

Year Passed 3 - 4.5 -4.85∗∗∗ .106∗∗∗ -.000191
(1.55) (.0399) (.000195)

Year Passed 4.5 - 6 -5.08∗∗∗ .115∗∗∗ -.000266
(1.68) (.0426) (.000207)

Year Passed 6 - 7.5 -2.22 .0196 .000208
(1.37) (.0328) (.000154)

Year Passed 7.5 - 9 -.667 -.0178 .000449∗∗

(1.52) (.0372) (.000188)
Year Passed 9 - 10.5 -1.06 -.0115 .000447∗∗

(1.49) (.0371) (.000188)
Year Passed 10.5 - 12 -.306 -.0364 .000519∗∗

(1.84) (.045) (.000214)
Year Passed 12 - 14 -.00582 -.0611 .000891∗∗∗

(1.77) (.0406) (.000182)
Year Passed 14 - 23 -.522 -.0329 .000794∗∗∗

(1.35) (.035) (.000167)

Observations 1027
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Dependent variable is the annual change in soil organic carbon. The table displays the results of a
single regression in three columns: the coefficients of time intervals in column 1, the coefficients of time
intervals interacted with final soil organic carbon in column 2, and the coefficients of time intervals
interacted with squared final soil organic carbon in column 3.
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(a) Grassland to Cropland (b) Cropland to Grassland

(c) Forest to Cropland (d) Cropland to Forest

(e) Forest to Grassland (f) Grassland to Forest

Figure A3: ∆ OC by time interval since LUC
Note: The Figure shows the organic content variations (gC/kg soil, without bulk density) observed for each
non-overlapping interval following a LUC. The values are computed from Equation 4.
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(a) Grassland to Cropland (b) Cropland to Grassland

(c) Forest to Cropland (d) Cropland to Forest

(e) Forest to Grassland (f) Grassland to Forest

Figure A4: ∆ SOC by time interval since LUC
Note: The Figure shows the soc variations predicted for each interval following a LUC. The values are
computed from Equation 4.
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(a) Grassland to Cropland (b) Cropland to Grassland

(c) Forest to Cropland (d) Cropland to Forest

(e) Forest to Grassland (f) Grassland to Forest

Figure A5: ∆ SOC by time interval since LUC
Note: The Figure shows the ∆ SOC predicted based on the regression analysis. The values are computed
in Section 3.2.
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Table A8: ∆SOC by Country and LUC under “Static” Approach

Country G to C F to C F to G C to G C to F G to F

AT -38.9 -21.4 3.3 28.9 25.6 -4.4

BE -45.3 -27.4 -4.7 33.3 31.9 -16.2

BG -4.3 -11.9 -0.3 6.1 11.3 3.4

CY -27.3 -28.7 -3.6 -33.2

CZ -15.5 -29.8 -18.6 2.1 26.4 10.4

DE -50.9 -29.4 13.9 43.9 30.0 -14.0

DK -53.5 -12.2 2.1 -43.3

EE -20.1 -29.5 29.5 33.5 19.6 -2.7

EL -28.7 -29.3 6.4 37.6 32.8 3.4

ES -26.4 -33.4 -6.5 26.7 35.0 4.3

FI -10.8 3.2 -2.9 -14.2

FR -43.2 -31.3 -5.0 36.5 31.7 -6.0

HR -71.2 -29.6 -1.2 46.4 25.4 -25.3

HU -49.3 5.8 45.9 26.3 0.5 -59.9

IE -52.5 -65.6 -14.7 54.4 86.2 30.8

IT -29.0 -35.1 -7.1 22.7 25.0 -4.7

LT 2.3 -12.3 14.4 13.1 9.5 5.6

LU 7.0 -32.4

LV -4.2 -18.8 -12.2 -1.9 16.3 6.5

MT

NL -51.7 -3.8 33.0 33.0 -2.8 -11.2

PL -47.5 -18.2 18.1 32.0 15.9 -24.7

PT -12.9 -16.4 -2.7 20.2 21.0 4.0

RO -3.2 -6.5 -2.3 5.0 7.9 -0.5

SE -94.6 -14.4 94.4 90.4 -13.6 -85.0

SI -29.1 0.0 45.0 48.6 3.5 -31.0

SK -33.5 5.4 4.2 9.2 -2.0 -15.8

UK -25.6 -6.7 3.1 30.6 31.2 -4.0
Note: the table display ∆ SOC (tC.ha−1) under “static” approach by Country following all 6 types of
LUC, where G stands for Grassland; F stands for Forest, C stands for Cropland.
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Table A9: Difference of ∆ SOC between “Dynamic” and “Static” Approach

Country G to C F to C F to G C to G C to F G to F

AT 30.2 8.8 1.1 -15.1 18.2 34.5

BE 36.0 14.8 9.1 0.3 11.9 46.3

BG -5.2 -0.7 4.7 -3.4 32.5 26.7

CY 16.1 47.4 63.3

CZ -0.3 17.2 23.0 9.1 17.4 19.7

DE 42.1 16.8 -9.5 -19.7 13.8 44.1

DK 42.5 -0.4 41.7 73.4

EE 8.5 16.9 -25.1 -18.5 24.2 32.8

EL 8.8 16.7 -2.0 -58.5 11.0 26.7

ES 18.1 20.8 10.9 -50.1 8.8 25.8

FI -15.8 46.7 44.3

FR 34.4 18.7 9.4 -11.2 12.1 36.1

HR 62.6 17.0 5.6 -20.3 18.4 55.4

HU 40.0 -18.4 -41.5 -0.2 43.3 90.0

IE 44.3 53.0 19.1 -33.7 -42.4 -0.7

IT 13.9 22.5 11.5 -17.0 18.8 34.8

LT -11.8 -0.3 -10.0 9.4 34.3 24.5

LU 36.8 62.5

LV -4.3 6.2 16.6 56.0 27.5 23.6

MT

NL 43.0 -8.8 -28.6 51.1 46.6 41.3

PL 35.9 5.6 -13.7 -30.6 27.9 54.8

PT -5.0 3.8 7.1 -18.5 22.8 26.1

RO -6.0 -6.1 6.7 -2.6 35.9 30.6

SE 77.3 1.8 -90.0 -61.2 57.4 115.1

SI 20.6 -12.6 -40.6 -22.9 40.3 61.1

SK 23.9 -18.0 0.2 -6.1 45.8 45.9

UK 17.4 -5.9 1.3 1.6 12.6 34.1
Note: the table show the difference of total ∆ SOC (tC.ha−1) under “dynamic” and “static” approach by
Country following all 6 types of LUC, where G stands for Grassland; F stands for Forest, C stands for
Cropland.
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Table A10: Total ∆ SOC (MtC) since 1990 under “Dynamic” Approach

Country G to C F to C F to G C to G C to F G to F

AT -0.6 -0.1 0.2 1.1 1.1 3.7

BE -1.5 -0.0 0.1 3.1 0.2 0.9

BG -3.2 0.0 0.0 2.7 1.2 2.9

CY -0.0 0.0 -0.0 0.0 0.0

CZ -0.6 -0.0 0.0 2.8 0.8 0.5

DE -14.1 -0.0 0.0 49.4 0.3 7.9

DK -0.5 -0.1 0.0 1.6 4.5 0.2

EE -0.3 -0.0 0.0 0.6 1.7 1.4

EL -0.3 -0.0 0.0 -17.4 1.5 2.9

ES -3.1 -2.9 0.2 -32.2 43.2 72.2

FI -1.2 0.1 1.0 1.8 1.7

FR -37.5 -4.6 3.2 57.3 42.7 38.6

HR -0.5 -0.0 0.0 2.6 0.1 1.9

HU -1.5 -0.1 0.0 3.6 12.7 1.7

IE 0.0 0.0 0.0 0.0 0.0 5.9

IT -4.2 0.0 0.0 9.2 0.0 61.6

LT -10.2 0.0 0.0 33.4 0.7 3.6

LU -0.0 0.0 0.3 0.0 0.0

LV -1.4 -0.1 0.2 32.5 2.5 3.8

MT 0.0 0.0 0.0 0.0

NL -5.5 -0.1 0.2 58.1 0.7 1.3

PL -0.5 0.0 0.0 0.4 27.3 3.9

PT -2.5 -1.0 0.6 0.4 8.6 8.9

RO -35.6 -0.3 0.2 11.9 2.8 4.0

SE -0.8 -0.2 0.2 2.3 5.3 2.2

SI -0.3 -0.0 0.1 2.3 0.0 6.5

SK -0.3 -0.0 0.0 0.3 0.1 0.8

UK -14.5 -0.0 0.2 74.2 3.0 13.2
Note: the table display total ∆ SOC (MtC) under “dynamic” approach by Country, based on LUC changes
since 1990 following all 6 types of LUC, where G stands for Grassland; F stands for Forest, C stands for
Cropland.
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A.2 Machine Learning Model520

We train our machine learning model to predict whether each LUCAS point is cropland by521

CORINE data of the same year and location. To enhance the accuracy, we geo-reference the522

location by a set of input features listed in Table A11. Specifically, we include the four levels of523

administration division, the distance to the nearest settlement, city and road, soil type. Since the524

heterogeneity of local land cover can lower the accuracy of prediction (Latifovic and Olthof 2004),525

We aggregate the land cover surrounding each input point to determine the fraction representing526

the dominant land cover type, as well as the fraction that matches the land cover of the input527

point, following (Ran et al. 2010). We then split the dataset into five folds, train the cropland528

model by KNN algorithm with 50 nearest neighbours using four folds, and test the cropland model529

by the remaining fold. We repeat the same process and train the model for grassland and forest.530

Overall, our machine learning model achieves 85% accuracy in identifying the most likely 20% of531

cropland, 87% accuracy for the most likely 20% of forest, and 80% accuracy for the most likely532

6.6% of grassland.533
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Table A11: Definitions and Sources for Input Features

Input Feature Detail Source
Latitude LUCAS
Longitude LUCAS
NUTS 0 country LUCAS
NUTS 1 groups of states LUCAS
NUTS 2 states LUCAS
NUTS 3 groups of districts LUCAS

Settlement Distance
the distance to the nearest settlement whose

population is less than 50,000
EuroGlobalMap

City Distance
the distance to the nearest city whose popu-

lation is larger than 50,000
EuroGlobalMap

Road Distance the distance to the nearest road network EuroGlobalMap
Soil type ESDAC

CORINE Land Cover

the land cover at the location of the input

point in the raster file of 1990, 2000, 2006,

2012, and 2018

CORINE Land Cover

CORINE Reclassificaiton

Reclassify CLC code 1-11 into Urban ; CLC

code 12-17 into Crop; CLC code 18-21 and 26

into Grassland; CLC code 22-25 into Forest;

CLC code 27-44 into Other

CORINE Land Cover

CORINE Neighbour

The number of neighbours (0-8) among eight

directions (S, W, N, E, SW, SE, NW, NE)

that have the same value as the central

CORINE Land Cover

CORINE Land Cover

Dominant Land Cover
the fraction of dominant land cover within

1km of the input point
CORINE Land Cover

Same Land Cover
the fraction of the same land cover as the

input point within 1km
CORINE Land Cover

EuroGlobalMap is accessed from https://www.mapsforeurope.org/access-data. ESDAC is accessed from

https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data. CORINE

Land Cover is accessed from https://land.copernicus.eu/en/products/corine-land-cover.
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A.3 Robustness Tests534

The results in Figure 4 are partially derived from our ML model, where we assign the land535

cover category with the highest probability to each point. To examine the quality of land-use536

predicted from the model as well as the CLC data it relies on, we conduct a bootstrap style test537

of sensitivity (Rosenbaum 2005). For 1990 and 2000 when land-use is not observed in LUCAS but538

predicted from CLC, land-use is randomly drawn based on the estimated probabilities instead of539

being attributed to the likeliest land-use possibility with a minimum likelihood of 50%. At each540

draw of the bootstrap, some ∆SOC values move in or out of the LUCXY sample, proportionally to541

the probability that such a LUC actually occurred either between 1990 and 2000 or between 2000542

and 2006. The process is repeated 100 times.543

As illustrated in Figure A6, 100 simulations depicted by grey lines, derived from our machine544

learning model’s land-use predictions, exhibit a pattern consistent with the main result in Figure545

4 represented by the red line. Note that each draw changes not only the estimates for the oldest546

LUCs, but also the most recent ones as a draw may drop some points which do not have 100%547

likelihood of having been the intial land-use both in 1990 and 2000. The positioning of the main548

result in the center of the distribution further validates our primary findings.549
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Figure A6: Simulation of Main Results
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A.4 Regional results550
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(a) (b)

(c) (d)

(e) (f)

Figure A7: ∆ SOC by time interval since LUC for Atlantic Region

Note: The Figure shows the ∆ SOC predicted based on the regression analysis. The values
are computed in Section 3.2.
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(a) (b)

(c) (d)

(e) (f)

Figure A8: ∆ SOC by time interval since LUC for Mediterranean Region

Note: The Figure shows the ∆ SOC predicted based on the regression analysis. The values
are computed in Section 3.2.
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(a) (b)

(c) (d)

(e) (f)

Figure A9: ∆ SOC by time interval since LUC for Scandinavian Region

Note: The Figure shows the ∆ SOC predicted based on the regression analysis. The values
are computed in Section 3.2.
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(a) (b)

(c) (d)

(e) (f)

Figure A10: ∆ SOC by time interval since LUC for Continental Region

Note: The Figure shows the ∆ SOC predicted based on the regression analysis. The values
are computed in Section 3.2.
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