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Abstract

The objective of this paper is to compare the predictive accuracy of individual

and aggregated econometric models of land-use choices. We argue that modeling

spatial autocorrelation is a comparative advantage of aggregated models due to the

smaller number of observation and the linearity of the outcome. The question is

whether modeling spatial autocorrelation in aggregated models is able to provide

better predictions than individual ones. We consider a complete partition of space

with four land-use classes: arable, pasture, forest, and urban. We estimate and

compare the predictive accuracies of individual models at the plot level (514,074

observations) and of aggregated models at a regular 12 × 12 km grid level (3,767

observations). Our results show that modeling spatial autocorrelation allows to

obtain more accurate predictions at the aggregated level when the appropriate pre-

dictors are used.
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1 Introduction

Land-Use Changes (LUC) have significant economic and environmental impacts with

implications for a wide variety of policy issues including food security, wildlife conser-

vation, housing supply, and carbon sequestration [65, 12]. Given these impacts and the

expected LUC in the next decades, prospective analysis requires a thorough understand-

ing of how economic mechanisms and policy decisions affect LUC patterns [50, 40, 71].

LUC econometric models can be classified in two general groups based on their use

of aggregated or individual data.1 Due to the scarcity and cost of access to individual

level data, most studies in the literature have been based on aggregated data for a

region, a country, or other geographic scales [56, 55, 17]. Recent studies increasingly

rely on individual data and consider discrete plot-level choices as the outcome of interest

[43, 41, 7]. Thanks to individual data availability and to methodological advances, the

estimation of individual LUC models has become easier. However, aggregated LUC

models are still appealing as the current trend in LUC modeling is definitely towards

global models at very large scales [37]. Well-known examples where global LUC models

are needed are tropical deforestation, agricultural expansion, intensification, and food

security [25].

The comparative advantages between individual and aggregated models in terms

of predictive accuracy remains an open question with mixed evidence in the literature.

In a seminal paper, [27] have examined the relative power of individual (micro) and

aggregated (macro) models for explaining aggregated outcomes and found that the ag-

gregated model is often better. [70] examine this issue in the context of predicting LUC.

They show that, even for linear models, the choice between micro or macro scale to

make aggregate predictions cannot generally be resolved by an priori reasoning. [58]

show that modeling spatial autocorrelation is the most effective way to predict LUC at

the individual scale, while limited to small study areas or small densities of observations.

Here, we consider modeling spatial autocorrelation as a comparative advantage of ag-

1In the literature, "individual data" corresponds both to "sample plot" and "parcel level" data (see for
example [54]). Our "individual" data are "sample plot" data, also called "micro level data" by [66] or
"disaggregate data" by [13]. For more reviews of land-use modeling, see [30, 29].
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gregated models due to their smaller number of observation and the linearity of their

outcome. The question is whether this possibility of using more advanced econometric

tools could provide better predictions than aspatial individual models.2 These compar-

isons are made at the same aggregated scale, both in terms of in- and out-of-sample

predictive accuracy. In the sake of exhaustivity, we also differentiate LUC models ac-

cording to their temporal horizons, namely short run and long run models (respectively

called land-use change models and land allocation models by [57])

With respect to the spatial dimension, the vast majority of past studies assumes

spatial independence of land-use choices, both at aggregated and individual scales. Re-

cent exceptions include: [18, 61, 17, 22, 41]. Incorporating spatial autocorrelation

into land-use models raises several issues related to econometric estimation, hypothesis

testing and prediction [5, 16]. This is even more challenging in the case of individ-

ual multinomial land-use models since the introduction of spatial dependence renders

discrete choice models analytically intractable. The estimation of such models requires

the use of simulation or Bayesian techniques [23].3 Consequently, we consider in this

paper only spatially independent models at the individual scale but we introduce spatial

autocorrelation in some of the aggregated models.

This paper contributes to the LUC literature in two ways. Firstly, we explicitly

introduce a Ricardian framework to formalize the possibility of using land price as a

measure of the economic returns from land. This provides a consistent framework

to compare individual, discrete choice models and aggregated, log-linearized models.

Moreover, this highlights the fundamental role of conversion costs between land uses in

differentiating short run and long run LUC models. Secondly, we show how introducing

spatial autocorrelation in aggregated models enables better predictions than individual,

aspatial models with higher number of observations. This is a very important result for

2In the following of this paper, we call spatial models those that model spatial autocorrelation explic-
itly. Conversely, we call aspatial models those that can include spatial effects without explicitly estimating
spatial autocorrelation.

3Other estimation procedures have also been proposed in the literature: EM method [47], the gen-
eralized method of moments [53], the method of maximum pseudo-likelihood [62] and the method
composite maximum likelihood [22, 61]. For a detailed review of the inclusion of spatial autocorrelation
in discrete choice models see [23] and [62].
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empirical work in LUC modeling as we show that it may not be worth using individual

land use data when the sole objective is to predict aggregated land use.

The paper is organized as follows. In section 2, we set up the micro-economic

Ricardian framework to motivate our empirical specifications. In section 3, we present

the in-sample and out-of-sample formulas available to predict LUC. In section 4, we

present the data and in section 5 the results both in terms of estimated parameters and

predictive accuracies. The last section 6 reports a summary and the conclusions.

2 Econometric models of LUC

2.1 Individual models

Following the consensus of the econometric literature about LUC [63, 56, 44], we con-

sider a risk-neutral landowner facing the choice of allocating a parcel of land of uniform

quality to a use ` among a set of L alternatives. Conditionally on previous land use l,

this stylized landowner i chooses at time t the use `∗it that provides the highest utility.

Accordingly, this choice is driven by the following program:

`∗it = argmax
`

{
uil`t

∣∣ `i(t−1) = l
}
. (1)

The current utility depends on previous land use l because of conversion costs of

changing land use that lead to temporal autocorrelation of individual choices [44, 40].

As [64] states, the two major implications of this random utility framework – utili-

ties are ordinal and only differences in utilities matter – are in accordance with the

standard economic theory. Therefore, this discrete choice framework is fairly general,

the strongest restrictions come from the parametrization of the utility functions that

is necessary for the application to the data. If the utility from land use is the present

discounted value of the stream of expected net benefits from the land, [56] shows that

landowners choose the use with the highest expected one-period return at time t, minus

the current one-period opportunity cost of conversion. This reads as: uil`t = E(ri`t)− cl`,
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where E is the expectation operator evaluated at t, ri`t is the one-period return asso-

ciated to land use ` for i at t and c`l is the cost of conversion from use l to use `. We

consider these bilateral conversion costs to be constant in time and independent from

the attributes of the plot i.4 By noting dil(t−1) a dummy variable equals to 1 if the plot i

is in use l at (t− 1) and 0 otherwise, we can simplify the utilities ∀i, `, t:

ui`t =
∑

l=1...L
dil(t−1)uil`t = E(ri`t)−

∑
l=1...L

dil(t−1)cl`. (2)

In contrast to the above random utility framework, which is shared by most of the

econometric LUC literature, the relevant data used to proxy expected one-period returns

are very heterogeneous in previous studies. It is clear that obtaining precise data about

expected returns for each use and each plot of land is challenging.5 Here, following

[7], we match data about land price with the Ricardian formula to proxy the expected

returns.6

For each land use `, the Ricardian formula states that the observed land price r`t at

t for a given land plot is equal to the net present value of all expected future returns.

We note τ the discount factor and κ` the expected growth rate of return from use ` as

such E(r`t) = κ` × r`(t−1). This leads to a proportional relationship between land price

and expected one-period return:

r`t =
∞∑
s=0

E(r`(t+s))
(1 + τ)s

=
1 + τ

1 + τ − κ`
E(r`(t+1)). (3)

This shows that land prices can be used to substitute expected returns in the above

specification (2) of utility, without ensuring that returns are perfectly observed. Typ-

ically, available data contain more precise biophysical variables (land quality, topog-

raphy, climate) that might also affect the landowner’s returns, as they are some non-

economic determinants of utility. Hence, we specify the expected returns as E(ri`t) =

4These assumptions can be relaxed in the empirical part by including interactions between explana-
tory variables or by specifying random coefficients.

5For the United States, [45] makes an important data gathering effort to construct county-level re-
turns for crops, pastures, forests and urban. The other studies use more partial information about returns,
in very heterogeneous ways depending on the research questions.

6We argue that data about land price are in general available at fine spatial scales, it is at least true
for our case study of France.
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b>i γ
B
` + rg(i)`tγ

R
` + εi`t where bi is a vector of perfectly observed biophysical variables,

g(i) is the unit corresponding to i in the scale g of land price data availability, and εi`t

represents the random deviations from the average values due to unobserved variables.

Substituting this approximation of expected net returns in Equation 2 allows us to ob-

tain the following reduced form for utilities:

ui`t = d>i(t−1)γ
D
` + r>g(i)tγ

R
` + b>i γ

B
` + εi`t, ` = 1, . . . , L. (4)

The vector di(t−1) binds the indicator functions di`(t−1) for ` = 1 . . . L such that

bilateral conversion costs are identified through the associated parameter vector γD` .

Neglecting one-shot conversion costs amounts to consider utility at a longer run time

horizon, such specification without lagged land use are called land allocation models by

[57]. The (L× 1) vector rg(i)t contains the L land prices corresponding to the different

land uses, and the (K × 1) vector bi binds the K biophysical variables described in

greater details in the data section. The vectors γD` , γR` and γB` are the unknown vectors

of parameters to be estimated of respective dimensions (L× 1), (L× 1) and (K × 1). By

identification with Equation 3, we have γR` = 1−(κ`/(1+τ)) in order to identify (up to a

constant discount factor τ) the expected growth rates κ` through the utility parameters

γR` associated to land prices.

The stochastic dimension of this framework is only related to the unobserved com-

ponents εi`t and their associated densities. [46] considers three standard assumptions

about error terms that allow one to obtain a multinomial logit model: independence,

homoskedasticity and extreme value distribution. On the basis of these assumptions,

one can show that the probabilities of observing the land use ` on i at t have simple

closed forms, which correspond to the logit transformation of the deterministic part of

the utility, ui`t ≡ ui`t − εi`t:

pi`t =
exp(ui`t)∑L
l=1 exp(uilt)

(5)
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2.2 Aggregated models

There is an important literature on econometric LUC models estimated on aggregated

data: [42, 63, 72, 56, 48] are the most significant papers. The underlying micro-

economic theory is identical to that in the previous section, but individual choices are

aggregated in order to estimate land-use shares models instead of discrete choice mod-

els. This process of aggregation is generally considered as a loss of information through

a drastic decrease in the number of observations. A direct aggregation of land use from

the parcel i to the grid g implies considering land use shares Sg`t. The land use share

Sg`t is computed as the share of parcels in the grid g with land use ` at time t.

Based on the same economic rationales than individual models, the observed shares

of land use ` in t for g = 1, . . . , G are generally expressed as (∀` = 1, . . . , L):

Sg`t =
exp

(
S>g(t−1)β

D
` +R

>
gtβ

R
` +B>g β

B
`

)
∑L

l=1 exp
(
S>g(t−1)β

D
l +R

>
gtβ

R
l +B>g β

B
l

) . (6)

The meanings and dimensions of these variables are the same as in the previous

subsection, capital letters represent aggregated values (averaged from individual data)

and vectors βD` , βR` and βB` are the unknown vectors of parameters to be estimated,

of respective dimensions (L × 1), (L × 1) and (K × 1). Aggregating the dummy vector

di(t−1) consists of computing land use shares Sg(t−1) from previous (t − 1) period as

explanatory variables. The elements Rgt and Bg are not indexed by ` since we use the

same explanatory variables in all equations.

When estimating aggregated LUC models, one needs to handle two specific issues

which arise for dependent variables as shares or proportions. The first issue concerns

the bounded nature of shares in which zeros and ones may appear. The second issue

concerns the adding-up constraint as the land use shares have to sum up to one. The

most common strategy in the literature is to specify the shares as logistic functions

[72, 17]. This has the advantage of being linearly tractable thanks to the logit-linear

transformation [73].7

7We have also considered two other specifications that have been proposed in the literature to deal
with this problem: the fractional logit model proposed by [52] and the fractional Dirichelet model pro-
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In terms of logistic shares, we note S̃g`t ≡ log(Sg`t/Sglt) the natural logarithm of

each observed share ` normalized by a reference land use l. The aggregated land use

share model is approximately:8

S̃g`t ≈ S̃g`(t−1)β
D
` +R

>
gtβ

R
` +B>g β

B
` + ξg`t ∀` 6= l. (7)

With L land use categories, the system has L − 1 equations. Again, the elements

Rgt and Bg do not have an index ` since we use the same explanatory variables in

all equations. A Seemingly Unrelated Regressions approach could also be adopted to

allow for correlated errors between equations of the system [20], but [17] show that

allowing for inter-equation correlations does not improve the predictive accuracy of

such models. Therefore, to simplify the results, we skip this aspect and estimate the

linearized Equation 7 by Ordinary Least Squares (OLS) first. The spatial dimension of

the observations can easily be introduced in these aggregated models by including a

smoothed function of the geographical coordinates of the grids’ centroids in Bg. This

leads to semi-parametric Generalized Additive Models (GAM), estimated by penalized

likelihood techniques [28, 69] also used in the literature [68, 67]. Because in this case,

spatial autocorrelation is not modeled explicitly, we do not consider such models as

being spatial models but we nevertheless include them in our comparative set.

2.3 Spatial autocorrelation

The spatial econometric literature is extensive [19, 4, 39, 6] and provides a number of

ways to deal with spatial autocorrelation. Nevertheless, introducing spatial dependence

in discrete choice models is still problematic econometrically, especially for high num-

bers of observations [23, 62, 60]. Indeed, an important consequence of introducing

spatial autocorrelation in discrete choice models is the complex covariance structure

posed by [49]. As they do not perform better that the specifications included in the paper, we do not
report the results but they are available from the authors upon request.

8We choose the reference modality as the land use with the less number of shares equal to zero.
Because it is still possible to have some zeros at the denominator, we add ε = .0001 at the numerator
and the denominator of (7). This is a minor drawback that can be visually evaluated from Appendix A.9.
More rigorously, it will be also evaluated by comparing the predictions with those from other models, as
we consider this as a necessity for estimating linearized logistic models, always used in the literature.

8



due to heteroskedasticity and the necessity to linearize the objective functions [35, 41].

Moreover, it implies high dimension integrals in order to compute the likelihood func-

tion [3] and relies on complex optimization algorithms, dependent on starting values

and tolerances of the fixed-point iterations for the generalized method of moments [36].

To avoid such complications associated with spatial autocorrelation in discrete choice

models, we focus in this paper on introducing spatial autocorrelation in the aggregated

land use models only. By design of our research question, the possibility of model-

ing spatial autocorrelation is a comparative advantage of aggregated models, and this

advantage is evaluated in terms of predictive accuracy.

For individual models, wrongly omitting spatial autocorrelation has two conse-

quences that potentially impact predictive accuracy. This depends on the type of auto-

correlation. In the case of omitted spatial lag of the endogenous variable, the estimated

coefficients are biased. In the case of omitted spatial errors, the estimated coefficients

are inconsistent. However, because modelling spatial autocorrelation is challenging for

the reason mentioned above, we propose an evaluation of these negative consequences

by comparison with aggregate spatial econometric models.

In the context of aggregated LUC models, we introduce spatial autocorrelation

through three additional terms corresponding to three spatial mechanisms that will be

formally tested with model estimation [39]. Let W be a G × G spatial weight matrix,

which summarizes the spatial connectivity structure of the aggregated observations. Be-

cause this matrix is row-standardized, it returns the weighted average of the values of

the neighbors of each observations once multiplied to a variable. We first consider the

most general spatial econometric model applied to aggregated land-use shares (that we

call SMC for spatial autoregressive mixed conditional) that can be written as (∀` 6= l):

S̃`t ≈ ρ`WS̃`t + βD` S̃`(t−1) + θD` WS̃`(t−1)

+Rtβ
R
` +WRtθ

R
` +BβB` +WBθB` + λ`Wξ`t + η`t (8)

The first included spatial terms (in the RHS of the first row) are related to simulta-

neous and time-lagged interactions that lead land use at t to depend upon neighboring
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land uses at t and t − 1 respectively. Hence, we include both ρ`WS̃`t and θD` WS̃`(t−1)

in the model, where S̃`t and S̃`(t−1) are (G × 1) vectors containing the G observations

for S̃glt and S̃gl(t−1). The parameters | ρ` | < 1 and | θD` | < 1 represent the intensity

of, respectively, simultaneous and time-lagged spatial lag dependence. The second

term is related to spatial error autocorrelation specified from Equation 7 as following:

ξ`t = λ`Wξ`t+ η`t, with |λ` | < 1 denoting the strength of spatial error dependence with

η`t an iid error term. The third and last spatial terms are related to the influence from

neighborhood characteristics, and is modeled by adding the spatially lagged exogenous

variables: WRtθ
R
` and WBθB` in the regression functions, where Rt is a (G × L) ma-

trix containing the G observations for Rgt and B is a (G ×K) matrix containing the G

observations for Bg over K explanatory biophysical variables.

This model is sufficiently general so that a large range of dynamic spatial econo-

metric models are nested. For instance, the spatial autoregressive conditional (SAC)

model can be recovered with θD` = θR` = θB` = 0 (14, 15, also called SARAR(1,1) by

32), the spatial error model (SEM) can be recovered with θD` = θR` = θB` = ρ` = 0, the

spatial X model (SXM) with θD` = ρ` = 0, the spatial autoregressive (SAR) model with

θD` = θR` = θB` = λ` = 0, and the spatial Durbin model (SDM) model can be recovered

when θD` = λ` = 0. Following [39], the SDM model is particularly suited to alleviate the

impact of spatially autocorrelated omitted variables. This point is particularly attractive

here because aggregated explanatory variables suffer of measurement errors by aver-

aging, which is a special case of omitted variables. Based on maximum likelihood, we

estimate all of these implied spatial specifications in the empirical part of the paper, we

will also test the relative importance of the three sources of spatial autocorrelation and

compare their implications in terms of predictive accuracy.

Finally, note that all the previously described models admit the temporal lag of the

outcome variables at their right hand sides, they consider explicitly land use changes

between t − 1 and t. Predicting the long run equilibrium (or steady state) of land use

is also of interest in applied works, and is of social and political concern. The long

run equivalents of previous models correspond to the limit of the expectation of the
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endogenous variable when t tends to infinity. Using a similar argument to that of [39],

it is possible to show that they correspond to a model similar to Equation 8 without the

term S̃`(t−1) as explanatory variable.

3 Performing predictions

For both individual and aggregated models, we perform in-sample and out-of-sample

predictions. In our context, the first case consists in predicting the value of the de-

pendent variable for the last year belonging to the sample used to estimate the models

(1993–2003). For the second case, we restrict the sample on 1993–1998 and predict

the value of the dependent variable for the same year 2003 that is not used to estimate

the models. This is the most interesting case for policy implications due to the time lag

usually required to produce and analyse the data. Researchers are rarely interested in

predicting land use from a year of observation to the following year. A 5 year interval

appears as a balanced choice, close to typical practices. In both cases, in-sample and

out-of-sample predictions are performed for short-run and long-run models.

Introducing a panel structure in the models by using the annual observations be-

tween 1993–1998 and 1998–2003 raises the classical issue of the choice between fixed

and random effects, in addition to the choice between spatial and aspatial models. But

this additional choice is more difficult to evaluate in terms of predictive accuracy as

we choose to do in this paper. In a fixed-effect model, the biophysical variables (el-

evation, slope, water holding capacity) will be "swept away" by the within estimator

and the associated coefficients will not be identified. This implies that we need to

substitute the well-used biophysical variables by unobserved heterogeneity identified

from dummy variables to predict land use. In addition, out of sample predictions are

not possible with year fixed effects. Models with random effects allow the inclusion of

time-invariant variables but impose the absence of correlation between the individual

random effects and the explanatory variables included in the model. This assumption

is rarely verified in most empirical applications.
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3.1 From individual models

For the individual MNL models, the predictions consist, for each plot i, of a fitted prob-

ability vector p̂it of being in each use at t. Assuming L = 4 and assuming that each

observation counts for 100 ha (in anticipation of our empirical application), the pre-

dicted probabilities can easily be converted into aggregated LUC. For example, consider

a plot i which counts for 100 ha of annual crop in period t − 1 and has a predicted

probability vector for period t of p̂it = (0.8, 0.15, 0.04, 0.01). This means that 80 ha are

predicted to retain their land use, 15 ha will be converted to pasture, 4 ha to forest and

1 ha to urban. The aggregation of probabilities in terms of land-use shares is operated

by multiplying the probabilities by 100 and summing the results at the aggregated scale

of interest.

With the MNL approach, the predicted acreages of each use are always positive

and assured to sum to the national available land base. We also estimate some linear

probability models on individual data that do not take account of the discrete nature

of LUC but are computationally less intensive. Within this framework, short run out-

of-sample predictions for the next period are easily simulated. As it will be used in

the application, putting the observed land-use dummies dit in the regression equation

(5) and changing the values of rgit to rgi(t+1) allows one to obtain the vector p̂i(t+1) of

predictions and compute the aggregated land-use shares to be compared.

3.2 From aspatial aggregated models

Aspatial aggregated predictors are based on short-run and long-run models without spa-

tial lag variables and without spatial error terms, i.e., Equation 6 and Equation 7. Their

form are described in the first part of the following Table 1 both for the in-sample and

the out-of-sample case. They only involve the knowledge of the current observations for

the explanatory variables (for both short and long run models) and the previous values

of the endogenous variable (for the short-run model). As the residuals are neither tem-

porally nor spatially autocorrelated, these simple predictors are the best linear unbiased

predictors. More specifically, we compute two aspatial predictors : (i) aspatial predic-
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tor on a simple land-use share model estimated by OLS and (ii) aspatial predictor on a

land-use share model including a smoothed function of the geographical coordinates of

the grids’ centroids (GAM).

3.3 From spatial aggregated models

The issue of prediction in spatial econometric models has gained considerable attention

in the last decade. For instance, [8] and [11] derive the Best Linear Unbiased Predictor

(BLUP, see 26) for static spatial panel data models with random effects and [10] derive

the BLUP for a dynamic spatial panel data model with random effects. When it comes to

compare the predictive accuracies of models, [9] find that for 1 year ahead forecasts of

the US states’ demand for liquor, estimators taking into account spatial correlation and

heterogeneity across states perform the best. [2] forecast employment in 50 Spanish

provinces and show that a dynamic spatial lag panel data model outperforms a non-

spatial dynamic panel model and that it is only slightly dominated by a seasonal ARIMA

model. Based on spatial dynamic panel models, [34] make multi-step forecasts of the

annual growth rates of the real GDP for 16 German länder and show that spatial effects

substantially improve the forecast performance. Finally, [59] forecast unemployment

levels for German labour-market district with a spatial GVAR model. Again, spatial

models lead to better results compared to non-spatial ones, all at an aggregated scale.

The first category of spatial predictors that we use is labeled “reduced” spatial pre-

dictors. They are based on the range of spatial models described in Equation 8 by

writing their reduced forms (i.e., factorizing the outcomes variable and putting all the

endogenous terms on the LHS):

S̃`t ≈ (I − ρ`W)−1
(
βD` S̃`(t−1) + θD` WS̃`(t−1)

+Rtβ
R
` +WRtθ

R
` +BβB` +WBθB` + λ`Wξ`t + η`t

)
(9)

The reduced spatial predictors in the in-sample and out-of-sample cases are de-
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scribed in the second part of Table 1. As there is no temporal autocorrelation in the

residuals, these predictors are BLUP for the out-of-sample case. Predictors of similar

form have been used in [34] and [59]. They also correspond to the first unbiased pre-

dictor suggested by [31].9 In the short-run case, these predictors necessitate informa-

tion on the temporal lagged values of the endogenous variables for all the sample units

under consideration while in the long run case, they only necessitate the observations

of the explanatory variables.

The third category of predictors that we used are “structural” spatial predictors as

they are based on the range of spatial models in structural form described in Equation 8.

Their form in the in-sample and out-of-sample case are described in the third part of

Table 1. The last term of these spatial predictors aims at accommodating spatial error

autocorrelation when it is present. Note that in the in-sample case and when λ` = 0,

they correspond to the "trend-signal-noise" predictors used in the geo-statistical litera-

ture [14] and use information on the current spatially lagged endogenous variables. In

the out-of-sample case, implementing these structural spatial predictors is not possible

as they necessitate observations on the future spatially lagged values of the dependent

variables, which are not available. As a consequence, we adopt a heuristic solution that

consists in replacing these future spatially lagged values of the dependent variable by

the current spatially lagged values of the dependent variable. Our justification in the

specific case of LUC models is that land use presents strong temporal autocorrelation

due to conversion costs.

9The case figure considered by [31] ("leave-one-out" predictors) and also by [51] ("ex-sample predic-
tors") is different from ours as they are concerned with a particular case of prediction: the case where for
a cross-section of observations, part of the observations on the dependent variable is missing and needs
to be predicted.
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4 Data

4.1 Land use data

Our data about land use are extracted from the TERUTI survey [1], which was carried

out every year between 1993 and 2003 by the statistical services of the French Ministry

of Agriculture [18, 17]. It contains data about land use through the whole continental

territory of France and counts 550,903 land plots surveyed. The survey uses a system-

atic area frame sampling with a two-stage sampling design. In the first stage, the total

land area of France is divided into 12 × 12 km grids. For each of the 3,767 grids there

are four aerial photographs which cover 3.5 km2 each. In the second stage, on each

photograph, a 6 × 6 grid determines 36 points (each point is representative of 100 ha

at NUTS 2 level). On the basis of the detailed classification of land uses (81 items), we

attribute to each plot a use among four more aggregated items:10 arable crops (wheat,

corn, sunflowers and perennial crop), pastures (a rather large definition: grassland,

rangelands, productive fallows, moor), forests (both productive and recreational, in-

cluding plantations and hedgerows) and urban areas (cities and exurban housing, and

also roads, highways, airports, etc.) The following Table 4 presents the raw transitions

1993–2003, from the rows to the columns.

Table 4 shows that, in 2003, arable crops, pastures and forests each represented

almost 30% of the continental France. It also shows that between 1993 and 2003, the

pastures area declined by almost 5%, while arable, forest and urban uses increased by

2%, 3% and 14% respectively. As in the other studies, LUC presents a strong temporal

autocorrelation, which comes from conversion costs but also inter-temporal decisions,

land owner specializations, legislative constraints, etc.

The aggregation from these individual data is operated at the first stage of the

sampling design, at the 12 × 12 km regular grid scale. As mentioned in footnote 8,

the presence of zeros in the denominator is a drawback of the logit transformation

10We dropped from the data observations that concern salt marshes, ponds, lakes, rivers, marshes,
wetlands, glaciers, eternal snow, wastelands, and moors, which accounted for about 7% of observations.
Our final sample counts N=514,074 points.
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for aggregate modeling that can be dealt with by adding a small value ε both in the

numerator and the denominator. As Figure 4 and Figure 5 of the Appendix 8.3 show,

the logit transformation produces some mass probabilities around the value −7 but the

distribution of the outcome is undoubtedly closer to that of a normal distribution than

raw land-use shares were.

4.2 Explanatory variables

The theoretical literature on LUC and the micro-economic framework set out in the

previous section suggest that the potential explanatory variables are the net returns

from each land uses. As presented in subsection 2.1, we use current land prices to

proxy the net returns to each land use according to the Ricardian formula.

Data on land prices are obtained from the statistical services of the French Ministry

of Agriculture. Yearly prices 1990–2005 are available for arable crops and pastures. A

central feature of these data is that the ministry only use sales between farmers and with

a sure agricultural purpose to estimate yearly prices. So, it seems natural to assume that

these prices correspond well to Equation 3, even if landowners are allowed to change

the land use. For the other two non-agricultural land uses considered – forest and urban

– the approximations of economic returns are computed differently. For the expected

net returns from forest, we use data on wood raw production (in m3), total forest area

(in ha) and wood prices (in current euros per ha). We compute the expected returns

from forest use by multiplying the aggregate production by its unitary price and dividing

the result by the total forest area in each département. Urban returns are approximated

by population densities for urban land use at the fine scale of the municipalities, based

on the national census of the French population. Finally, we include some biophysical

attributes: slope, altitude, water holding capacity (WHC), and climate. The following

Table 5 displays summary statistics for these variables aggregated at the grid scale but

they are initially available at the individual scale.
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5 Results

5.1 Specifications

Our comparative set includes a wide spectrum of econometric LUC models of the liter-

ature. We estimate a total of 7 types of models at different scales, and with different

spatial and temporal structures. Moreover, each specification is estimated two times.

On the one hand, the short run models (with time-lagged land use as explanatory vari-

able) are estimated on the 1993–1998 and 1993–2003 periods, and on the other hand,

the long run models (without time-lagged land use) are estimated on 1998 and 2003

cross-sections. For the models estimated on 1998 and 1993–1998 periods, the predicted

year (2003) is not used in the estimations. Hence, such predictions are considered out

of sample.

To keep the models comparable, we use the same specifications for the effects of ex-

planatory variables.11 We include the explanatory variables (land prices and biophysical

variables) additively, jointly with dummies about previous land use for individual short

run models and previous land use share for aggregated short run models. We maintain

the assumption of homogeneous conversion costs, again to ensure the comparability

between the models: while nothing preclude applied researchers to include interaction

or polynomials terms, we do not see any reason for our results to be dependent on this

choice.

Detailed estimation results (coefficients and standard errors) based on maximum

likelihood of different model specifications are provided in the Supporting Information

9 (SI). The explanatory variables are scaled to obtain standardized parameters, and we

report in SI only the results of the models estimated over the period 1993–2003 (i.e.,

those used to make in-sample predictions). Because of their proximity to the displayed

models, the raw results from the linear probabilities (close to the individual MNL), and

the SAC and SMC (close to SAR and SDM) are not reported but are available upon

11One can consider that, because of the higher number of observations, the individual models can
contain additional terms such as interactions between variables or polynomials. To keep our comparative
exercise simple, we choose to not consider this possibility of more complex regression functions as a
comparative advantage of individual models.
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request.

5.2 Parameter estimates

5.2.1 Aspatial models

We performed the estimation of individual MNL models using nnet 7.3 on the R soft-

ware. A critical aspect of such models is that the unobserved factors have to be uncorre-

lated over alternatives and periods, as well as having the same variance for all alterna-

tives and periods. These assumptions, used to provide a convenient form for the choice

probabilities, are not found to be restrictive (homoskedasticity cannot be rejected by a

score test, p-value= 0.283). Moreover, these assumptions are associated with the classi-

cal restriction of Independence of Irrelevant Alternatives for which Hausman-McFadden

specification tests were performed, with mixed evidence. The independence is not re-

jected for two uses: pasture and urban (p-values are respectively 0.001, 0.005) but is

rejected for arable and forest at 5%. This means that the former choices can be dropped

from the choice set without significant modification to the model (i.e., they are robust

to the IIA restriction), a property that does not apply to the latter two choices. However,

in the literature, it has been been found that the use of nested multinomial logit does

not change the main results [43, 41].

By comparing the significance of coefficients from aspatial models (Table 9 to 12

in the SI 9), a first important result is the strong effects of time-lagged land uses in

short run models, indicating strong conversion costs and strong inertia between LUC.

On aggregated models, OLS and GAM, the short run models present globally some R2

close to 0.9 where the OLS long run models have respectively 0.66, 0.23 and 0.26

for arable, forest and urban land uses. Including geographical coordinates in the GAM

increase substantially the R2. For the long run models without temporal lag, the regional

specializations of land use appear clearly: arable crops for the south-east, forests for the

south-west and urban areas around Paris, at the center-north. These contextual effects

are intuitive and are still present (even if less marked) for the models with temporal

lag.
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For the long run models (both individual and aggregated) and whatever the land

use considered, we see that land prices are very significant and have the expected signs.

We interpret these results as a quite robust validation of our Ricardian framework. An

interesting point is the time-scale interaction for the effects of the economic variables

of expected returns. From the long run model to the short run, the land prices keep

their significance for individuals models but are not longer significant in the aggregated

models. It is clearly related to the number of observation as this effect of the loss

of significance is related to aggregation. This can be considered as an expression of

multicolinearity in short run aggregated models that is not present in the short run

individual models because they use more observations [33].

5.2.2 Spatial models

We estimated the spatial econometric models using maximum likelihood through the R

package spdep. To avoid endogeneity problems, the spatial weight matrix W is based

on purely geographical considerations, we use queen contiguity of order one for all

models. Because we are interested in predictions, we do not run a detailed specification

search, based on the specific-to-general or the general-to-specific approaches (see 24,

21 or 38 for reviews of these spatial specification searches). Instead, as we do not have

any theoretical prior as to the form taken by spatial autocorrelation, we estimate the

full set of spatial models described in subsection 2.3 since spatial autocorrelation could

arise from several sources. The summary measure of impacts (direct, indirect and total

as defined in 39) are not reported here but are available upon request. Globally, it still

appears that incorporating lagged land use (i.e. short-run models) strongly decreases

the significance of the coefficients associated to the other variables or even renders then

insignificant or with a counter-intuitive sign.

Table 6 and Table 7 in the subsection 8.1 display the values of the spatial coefficients

ρ and λ for respectively the long run and the short run models. Evidence of spatial au-

tocorrelation is strong in all specifications, whether for the spatial error component or

the spatial lag component. When the spatial lag of the dependent variable (SAR, SDM)
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and the spatial error coefficient models (SEM, SXM) are introduced separately, spatial

autocorrelation appears to be positive but to different extents depending on the land

use: land use shares in forest is the most spatially autocorrelated across specifications

while urban use is the least spatially autocorrelated. In most general models (SAC,

SMC), some multicollinearity appears, with an instability of parameter according to the

specification. In effect, for each model, the spatial coefficients have opposite signs in-

dicating spurious compensation of the spatial effects between errors and lag. Finally,

when comparing the long run and short run models (between Table 6 and Table 7 in Ap-

pendix A.2), the extent of spatial autocorrelation is much less pronounced in the latter,

and although the spatial lag coefficient remains positive in all specifications, only the

spatial error coefficient is negative in most of the general SAC and SMC specifications.

5.3 Predictive accuracy

The predictive accuracy of the models is compared statistically by computing the Root

Mean Squared Errors (RMSE) for each model’s predictions, based on comparing ob-

served and predicted land use in 2003 at the aggregated grid level. The comparisons

are reported in the panels A, B, Table 2 for in-sample predictions and in panels A, B,

Table 3 for out-of-sample predictions. Each panel presents respectively the long run and

the short run predictions for different specifications and predictors.

The general patterns of predictive accuracy are threefold: (i) the short run models

present smaller RMSE than long run ones, (ii) the individual models do not present

substantial smaller RMSE than aspatial aggregated models, and (iii) spatial aggregated

models perform better than individual models in the long run, if the structural predic-

tors are used. From these both in-sample and out-of-sample predictions, the advantage

of using individual models is not found in terms of predictive accuracy whereas the

advantage of using spatial econometrics techniques is clearly present.

Looking in more details the results of Table 2 and Table 3, it appears that using the

structural predictors for the aggregated spatial models perform better than any other

estimation techniques. The SAC and SMC models are exceptions but they still have
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RMSE that are comparable to those of the other models. The differences are relatively

high, as it can be seen from the last columns reporting the RMSE means by rows. The

gains from the spatial models relative to OLS represent half the gains of OLS relatively

to the benchmark REF from constant predictions (i.e., the mean share for each unit).

Thus, this means that the effect is strong. With the same magnitude, the GAM is in

an intermediate position between the spatial and the aspatial models. For the aspatial

models (both aggregated and individual) the predictive abilities are rather similar and

the individual linear probability model is the worst. Note that the multicollinear models

such as SAC and SMC, perform the best, according to a property that multicollinearity

does not bias the predictions [33]. Including lagged land uses for short run predictions

drastically decreases the RMSE, and the differences between estimation techniques also

decrease significantly. The spatial models perform best, but the performance of the GAM

model is also quite similar. More importantly, the inclusion of temporal lag implies a

loss of relative performance in the models (aggregated and individual) based on discrete

outcomes: LPB and MNL. These results are confirmed visually by the maps presented in

the appendix 8.2 and 8.4.

6 Conclusion

It is widely acknowledged that micro-economic behaviors are more accurately analyzed

using individual data and models. However, with the recent development of individual

land-use models, aggregated models are still appealing as they ease estimation with

more advanced econometric techniques and are less data and computational demand-

ing. Nevertheless, the comparative advantages of individual models in terms of predic-

tive accuracy has remained an open question that was investigated in this paper.

We have compared the predictive accuracies of a wide spectrum of econometric

models of land use at different scales (individual and aggregated), spatial (with and

without spatial autocorrelation) and temporal horizons (short term and long term).

More specifically, we have showed how the introduction of spatial autocorrelation in
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aggregated models matters for improving their predictions related to aggregated LUC.

Our results suggest firstly that introducing spatial autocorrelation in aggregated models

improves their predictive accuracy and even outperforms individual models if appropri-

ate predictors are used. Secondly, we show that a specification including lagged land use

as explanatory variable in the aggregated as well in the individual models, outperforms

any other specification where only economic and biophysical variables are included.

Our findings show that it may not be worth using individual land-use data when

the only objective is to predict aggregate land use. By taking advantage of the progress

made in spatial econometrics tools, applied researchers can use the newly available

structural predictors to improve the quality of their LUC predictions. We hope that our

results give a chance for spatial econometrics to be more frequently used to perform

predictions, instead of mainly focused on causal inference. The results of our study

may not hold for other data and models even if they corroborates findings of previ-

ous literature that aggregation is not necessarily bad. We have to mention that the

strong temporal autocorrelation obtained (and the high predictive accuracies of short

run models) could be attributed to the fact that we model LUC in a developed country

with limited economic growth. This temporal autocorrelation is probably less strong in

developing countries with higher economic growth. Nevertheless, we can imagine that

our main results about using spatial autocorrelation to improve predictive accuracy is

still valid, even if this conjecture has to be empirically verified on other datasets.
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Table 4: Raw land use transitions in %, TERUTI 1993–2003

N = 514, 074 PASTURE ARABLE FOREST URBAN Sum

PASTURE 26.53 4.2 1.26 0.69 32.68
ARABLE 3.79 27.61 0.17 0.37 31.94
FOREST 0.56 0.13 29.03 0.15 29.87
URBAN 0.27 0.09 0.07 5.08 5.51
Sum 31.15 32.03 30.53 6.29 100

Note: 1993 land use in rows and 2003 land use in columns
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Table 5: Summary statistics for explanatory variables

N=3,767 DESCRIPTION MEAN STD MIN MAX

Arable returns03 returns from arable crop (2003 euro) 183.500 89.178 0.000 1,210.599
Pasture returns03 returns from pasture (2003 euro) 126.083 74.393 0.000 619.683
Forest returns03 returns from forest (2003 euro) 88.914 131.145 0.000 792.223
POP03 urban pop density (hab/km2) 3,109 17,929 51.639 819,298
Elevation elevation (meters) 336.230 399.984 0.000 2,772.500
Slope slope (degrees) 3.803 4.798 0.000 31.731
WHC water holding capacity (mm) 131.031 49.295 13.000 343.193
Soil depth soil depth (cm) 80.214 22.603 10.000 131.000
Precipitations precipitations (mm/yrs) 871.268 200.217 359.672 1,988.323
Temperature temperatures (degrees celsius) 11.528 1.947 -0.971 16.192
Humidity relative humidity (%) 932.614 52.380 730.042 1,026.848
Radiation solar radiation (J) 996.824 48.878 796.467 1,099.190

32



8 Appendix (for publication)

8.1 Spatial coefficient from aggregated models
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8.2 Observed land use in 2003 and long run predictions
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8.3 Aggregated outcome variables
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Table 6: Spatial coefficients for long run models

Spatial Error components: λ∗` Spatial Lag components: ρ∗`
Arable crop Forest Urban Arable crop Forest Urban

SEM 0.6449∗∗ 0.7349∗∗ 0.4991∗∗

(0.0183) (0.0248) (0.0217)
SXM 0.626∗∗ 0.7019∗∗ 0.4902∗∗

(0.0177) (0.0158) (0.0216)
SAR 0.5654∗∗ 0.7017∗∗ 0.4586∗∗

(0.0171) (0.0151) (0.0209)
SDM 0.6205∗∗ 0.6944∗∗ 0.4877∗∗

(0.0174) (0.0153) (0.0215)
SAC 0.9093∗∗ 0.9306∗∗ 0.8166∗∗ −0.6221∗∗ −0.7208∗∗ −0.6248∗∗

(0.0129) (0.0086) (0.0195) (0.047) (0.0426) (0.0502)
SMC 0.8995∗∗ −0.7029∗∗ −0.635∗∗ −0.7909∗∗ 0.8991∗∗ 0.7958∗∗

(0.0114) (0.0448) (0.0602) (0.044) (0.0112) (0.0215)
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Table 7: Spatial coefficients for short run models

Spatial Error components: λ` Spatial Lag components: ρ`
Arable crop Forest Urban Arable crop Forest Urban

SEM 0.1134∗∗ 0.3004∗∗ 0.2246∗∗

(0.022) (0.0295) (0.0278)
SXM 0.0473∗∗ 0.2404∗∗ 0.2∗∗

(0.0131) (0.0282) (0.0288)
SAR 0.1335∗∗ 0.1256∗∗ 0.1122∗∗

(0.0129) (0.0087) (0.0134)
SDM 0.0629∗∗ 0.2427∗∗ 0.2011∗∗

(0.0302) (0.029) (0.0287)
SAC −0.1119∗∗ 0.1451∗∗ 0.1338∗∗ 0.1572∗∗ 0.1103∗∗ 0.0755∗∗

(0.0334) (0.0324) (0.0361) (0.0132) (0.0087) (0.0179)
SMC −0.3827∗∗ −0.0403 −0.3825∗∗ 0.3746∗∗ 0.2776∗∗ 0.48967∗∗

(0.0958) (0.0418) (0.0814) (0.071) (0.0428) (0.0527)
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8.4 Observed land use in 2003 and short run predictions
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9 Supporting Information (not for publication)

9.1 Estimation results from individual MNL models

Table 8: Individual MNL models on 1993–2003

Long Run Short Run
arable use forest use urban use arable use forest use urban use

U93PSTUR −1.861∗∗∗ −3.032∗∗∗ −3.590∗∗∗
(0.008) (0.013) (0.017)

U93ARBLE 1.592∗∗∗ −3.120∗∗∗ −2.548∗∗∗
(0.009) (0.035) (0.025)

U93FORST −1.477∗∗∗ 3.939∗∗∗ −1.217∗∗∗
(0.043) (0.019) (0.041)

U93URBAN −1.245∗∗∗ −1.315∗∗∗ 2.865∗∗∗

(0.054) (0.059) (0.028)
Arable returns03 0.495∗∗∗ 0.332∗∗∗ 0.391∗∗∗ 0.288∗∗∗ 0.170∗∗∗ 0.252∗∗∗

(0.005) (0.005) (0.008) (0.007) (0.012) (0.013)
Pasture returns03 −0.269∗∗∗ −0.308∗∗∗ −0.257∗∗∗ −0.143∗∗∗ −0.237∗∗∗ −0.199∗∗∗

(0.005) (0.005) (0.007) (0.006) (0.012) (0.013)
Forest returns03 0.006 0.335∗∗∗ 0.070∗∗∗ 0.034∗∗∗ 0.181∗∗∗ −0.049∗∗∗

(0.005) (0.004) (0.007) (0.006) (0.010) (0.013)
POP03 −0.615∗∗∗ −0.122∗∗∗ 0.120∗∗∗ −0.262∗∗∗ −0.047∗∗∗ 0.046∗∗∗

(0.013) (0.008) (0.005) (0.013) (0.008) (0.005)
Elevation −0.903∗∗∗ −0.224∗∗∗ −0.533∗∗∗ −0.616∗∗∗ −0.153∗∗∗ −0.275∗∗∗

(0.012) (0.007) (0.017) (0.017) (0.019) (0.029)
Slope −0.224∗∗∗ 0.148∗∗∗ 0.034∗∗∗ −0.136∗∗∗ 0.141∗∗∗ −0.005

(0.009) (0.005) (0.011) (0.012) (0.012) (0.019)
WHC 0.262∗∗∗ −0.238∗∗∗ 0.091∗∗∗ 0.157∗∗∗ −0.089∗∗∗ 0.009

(0.008) (0.008) (0.012) (0.010) (0.020) (0.022)
Soil depth −0.162∗∗∗ 0.204∗∗∗ 0.019 −0.082∗∗∗ 0.077∗∗∗ 0.031

(0.007) (0.008) (0.012) (0.010) (0.019) (0.022)
Precipitations −0.453∗∗∗ 0.078∗∗∗ −0.122∗∗∗ −0.324∗∗∗ 0.018∗ −0.091∗∗∗

(0.005) (0.004) (0.008) (0.008) (0.010) (0.014)
Temperature 0.088∗∗∗ 0.027∗∗∗ −0.331∗∗∗ 0.022 −0.083∗∗∗ −0.125∗∗∗

(0.011) (0.008) (0.016) (0.015) (0.020) (0.028)
Humidity −0.058∗∗∗ −0.240∗∗∗ −0.549∗∗∗ −0.005 −0.394∗∗∗ −0.407∗∗∗

(0.009) (0.006) (0.012) (0.012) (0.016) (0.022)
Radiation −0.066∗∗∗ −0.208∗∗∗ 0.496∗∗∗ −0.103∗∗∗ 0.172∗∗∗ 0.390∗∗∗

(0.011) (0.009) (0.016) (0.015) (0.022) (0.029)
Constant −0.286∗∗∗ −0.060∗∗∗ −1.629∗∗∗

(0.005) (0.004) (0.007)

Akaike Inf. Crit. 1,160,067.000 1,160,067.000 1,160,067.000 413,591.400 413,591.400 413,591.400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
on scaled explanatory variables. Reference= Pastures
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9.2 Estimation results from the models estimated by OLS

Table 9: Linear logit-transformed OLS models of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.900∗∗∗

(0.020)
FOlog93 0.937∗∗∗

(0.017)
URlog93 0.847∗∗∗

(0.021)
scale(Arable returns03) 0.510∗∗∗ 0.041∗∗ 0.272∗∗∗ 0.012 0.397∗∗∗ 0.060∗∗∗

(0.042) (0.019) (0.036) (0.011) (0.033) (0.015)
scale(Pasture returns03) −0.331∗∗∗ −0.027 −0.325∗∗∗ −0.030∗∗ −0.234∗∗∗ −0.045∗∗∗

(0.036) (0.017) (0.032) (0.014) (0.032) (0.015)
scale(Forest returns03) −0.078∗∗ 0.018 0.525∗∗∗ 0.039∗∗∗ 0.116∗∗∗ −0.014

(0.035) (0.019) (0.036) (0.014) (0.029) (0.017)
scale(POP03) −0.239∗∗ −0.043 −0.053 −0.013 0.141 0.016

(0.121) (0.068) (0.127) (0.023) (0.300) (0.034)
scale(Elevation) −1.452∗∗∗ −0.189∗∗∗ −0.754∗∗∗ −0.139∗∗∗ −0.859∗∗∗ −0.108∗∗

(0.100) (0.059) (0.104) (0.026) (0.098) (0.048)
scale(Slope) −0.429∗∗∗ −0.135∗∗ 0.450∗∗∗ 0.069∗∗∗ 0.017 0.038

(0.083) (0.054) (0.073) (0.014) (0.077) (0.028)
scale(WHC) 0.378∗∗∗ 0.085∗∗∗ −0.287∗∗∗ 0.014 −0.026 −0.017

(0.054) (0.028) (0.056) (0.019) (0.047) (0.023)
scale(Soil depth) −0.260∗∗∗ −0.052∗ 0.255∗∗∗ −0.026 0.051 0.006

(0.053) (0.028) (0.055) (0.019) (0.049) (0.023)
scale(Precipitations) −0.568∗∗∗ −0.091∗∗∗ 0.040 −0.032∗∗∗ −0.104∗∗∗ −0.023

(0.035) (0.022) (0.030) (0.009) (0.032) (0.014)
scale(Temperature) 0.167∗∗ −0.082∗ 0.151 −0.021 −0.194∗∗ 0.039

(0.084) (0.046) (0.093) (0.018) (0.084) (0.033)
scale(Humidity) −0.003 −0.102∗∗∗ −0.119∗ −0.048∗∗∗ −0.319∗∗∗ −0.035

(0.062) (0.032) (0.065) (0.013) (0.070) (0.023)
scale(Radiation) −0.354∗∗∗ 0.025 −0.650∗∗∗ −0.018 0.243∗∗∗ 0.019

(0.074) (0.037) (0.081) (0.021) (0.078) (0.034)
Constant −0.615∗∗∗ −0.097∗∗∗ −0.177∗∗∗ 0.060∗∗ −1.815∗∗∗ −0.082∗∗

(0.025) (0.034) (0.023) (0.029) (0.023) (0.039)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
R2 0.663 0.911 0.229 0.919 0.359 0.852
Adjusted R2 0.662 0.911 0.227 0.918 0.357 0.851

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Reference modality= Pastures, scaled explanatory variables, HC robust standard errors.
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9.3 Estimation results from the GAM model

Table 10: GeoAdditive logit-transformed models of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.881∗∗∗

(0.010)
FOlog93 0.912∗∗∗

(0.006)
URlog93 0.837∗∗∗

(0.008)
scale(Arable returns03) 0.403∗∗∗ 0.032∗ −0.018 −0.018 0.245∗∗∗ 0.045∗∗∗

(0.035) (0.019) (0.031) (0.012) (0.032) (0.016)
scale(Pasture returns03) −0.126∗∗∗ −0.020 −0.037 −0.016 −0.106∗∗∗ −0.041∗∗∗

(0.033) (0.018) (0.029) (0.011) (0.030) (0.015)
scale(Forest returns03) −0.068∗ 0.011 0.053 0.021∗ 0.044 0.022

(0.041) (0.020) (0.037) (0.013) (0.037) (0.018)
scale(POP03) −0.180∗∗∗ −0.042∗∗∗ −0.026 −0.014∗ 0.141∗∗∗ 0.012

(0.023) (0.013) (0.021) (0.008) (0.021) (0.011)
scale(Elevation) −1.036∗∗∗ −0.062 −0.594∗∗∗ −0.120∗∗∗ −0.731∗∗∗ −0.168∗∗∗

(0.118) (0.066) (0.105) (0.039) (0.108) (0.055)
scale(Slope) −0.700∗∗∗ −0.202∗∗∗ 0.453∗∗∗ 0.062∗∗∗ 0.057 0.059∗∗

(0.062) (0.034) (0.055) (0.021) (0.056) (0.029)
scale(WHC) 0.375∗∗∗ 0.062∗∗ −0.233∗∗∗ 0.002 0.0002 −0.013

(0.051) (0.028) (0.046) (0.017) (0.047) (0.024)
scale(Soil depth) −0.383∗∗∗ −0.059∗∗ 0.097∗∗ −0.030∗ −0.057 −0.010

(0.050) (0.028) (0.044) (0.017) (0.046) (0.023)
scale(Precipitations) −0.486∗∗∗ −0.084∗∗∗ 0.211∗∗∗ −0.003 −0.134∗∗∗ −0.034∗

(0.039) (0.021) (0.035) (0.013) (0.035) (0.018)
scale(Temperature) 0.414∗∗∗ 0.025 0.188∗ −0.002 0.152 −0.006

(0.114) (0.061) (0.101) (0.037) (0.104) (0.051)
scale(Humidity) 0.028 −0.090∗∗ 0.324∗∗∗ 0.022 −0.031 0.040

(0.067) (0.036) (0.060) (0.022) (0.061) (0.030)
scale(Radiation) −0.118 0.044 −0.442∗∗∗ 0.0002 0.237∗∗∗ 0.070

(0.097) (0.051) (0.086) (0.031) (0.088) (0.043)
Constant −0.615∗∗∗ −0.109∗∗∗ −0.177∗∗∗ 0.047∗∗∗ −1.815∗∗∗ −0.107∗∗∗

(0.023) (0.023) (0.020) (0.014) (0.020) (0.019)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
Adjusted R2 0.716 0.913 0.426 0.921 0.418 0.855

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Reference= Pastures, scaled explanatory variables, bivariate smooth function of coordinates
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9.4 Estimation results from the SEM model

Table 11: Spatial Error Models of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.889∗∗∗

(0.009)
FOlog93 0.920∗∗∗

(0.006)
URlog93 0.842∗∗∗

(0.008)
scale(Arable returns03) 0.464∗∗∗ 0.050∗∗∗ 0.031 0.010 0.323∗∗∗ 0.063∗∗∗

(0.045) (0.018) (0.043) (0.012) (0.038) (0.016)
scale(Pasture returns03) −0.204∗∗∗ −0.031∗ −0.135∗∗∗ −0.031∗∗∗ −0.173∗∗∗ −0.047∗∗∗

(0.049) (0.017) (0.047) (0.012) (0.039) (0.015)
scale(Forest returns03) −0.087∗ 0.016 0.339∗∗∗ 0.044∗∗∗ 0.116∗∗∗ −0.005

(0.051) (0.016) (0.053) (0.011) (0.038) (0.015)
scale(POP03) −0.152∗∗∗ −0.042∗∗∗ −0.026 −0.014∗ 0.124∗∗∗ 0.014

(0.025) (0.013) (0.022) (0.008) (0.023) (0.011)
scale(Elevation) −1.065∗∗∗ −0.191∗∗∗ −0.531∗∗∗ −0.140∗∗∗ −0.830∗∗∗ −0.119∗∗∗

(0.099) (0.045) (0.090) (0.029) (0.086) (0.039)
scale(Slope) −0.448∗∗∗ −0.140∗∗∗ 0.570∗∗∗ 0.071∗∗∗ 0.061 0.044

(0.066) (0.032) (0.059) (0.020) (0.059) (0.027)
scale(WHC) 0.310∗∗∗ 0.084∗∗∗ −0.195∗∗∗ 0.006 0.017 −0.013

(0.061) (0.028) (0.055) (0.018) (0.054) (0.024)
scale(Soil depth) −0.213∗∗∗ −0.049∗ 0.144∗∗∗ −0.016 −0.013 0.006

(0.061) (0.028) (0.055) (0.018) (0.054) (0.024)
scale(Precipitations) −0.510∗∗∗ −0.095∗∗∗ 0.076 −0.032∗∗∗ −0.139∗∗∗ −0.027∗

(0.052) (0.018) (0.052) (0.012) (0.041) (0.016)
scale(Temperature) 0.494∗∗∗ −0.069∗ 0.422∗∗∗ −0.004 −0.082 0.041

(0.110) (0.040) (0.107) (0.027) (0.089) (0.035)
scale(Humidity) 0.067 −0.095∗∗∗ 0.140∗ −0.041∗∗ −0.272∗∗∗ −0.036

(0.083) (0.030) (0.082) (0.020) (0.067) (0.027)
scale(Radiation) −0.267∗∗ 0.016 −0.613∗∗∗ −0.030 0.245∗∗∗ 0.017

(0.114) (0.038) (0.113) (0.026) (0.088) (0.034)
Constant −0.639∗∗∗ −0.099∗∗∗ −0.194∗∗∗ 0.049∗∗∗ −1.814∗∗∗ −0.097∗∗∗

(0.059) (0.024) (0.069) (0.016) (0.040) (0.021)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
σ2 1.656 0.594 1.250 0.203 1.491 0.394
Akaike Inf. Crit. 12,891.050 8,769.077 11,936.960 4,771.993 12,373.050 7,246.211
Wald Test (df = 1) 1,247.921∗∗∗ 26.557∗∗∗ 880.688∗∗∗ 103.971∗∗∗ 527.874∗∗∗ 65.066∗∗∗

LR Test (df = 1) 917.587∗∗∗ 12.524∗∗∗ 1,399.780∗∗∗ 96.056∗∗∗ 435.836∗∗∗ 58.226∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
scaled explanatory variables. Reference= Pastures
The Wald and the LR test are the Wald and the likelihood ratio test for the significance of the spatial error coefficient
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9.5 Estimation results from the SXM model

Table 12: Spatial X Models of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.834∗∗∗

(0.011)
FOlog93 0.897∗∗∗

(0.006)
URlog93 0.836∗∗∗

(0.009)
scale(Arable returns03) 0.352∗∗∗ 0.077∗∗ −0.054 −0.054∗∗∗ 0.171∗∗∗ 0.048∗

(0.056) (0.035) (0.049) (0.020) (0.054) (0.029)
scale(Pasture returns03) −0.032 0.004 −0.010 0.034 −0.022 −0.029

(0.068) (0.042) (0.060) (0.024) (0.066) (0.034)
scale(Forest returns03) −0.035 0.011 0.074 0.043 0.066 0.124∗∗∗

(0.093) (0.057) (0.081) (0.033) (0.090) (0.047)
scale(POP03) −0.132∗∗∗ −0.016 −0.020 −0.010 0.123∗∗∗ 0.011

(0.025) (0.016) (0.022) (0.009) (0.024) (0.013)
scale(Elevation) −0.857∗∗∗ −0.053 −0.512∗∗∗ −0.092∗∗ −0.844∗∗∗ −0.133∗∗

(0.105) (0.067) (0.093) (0.038) (0.101) (0.054)
scale(Slope) −0.432∗∗∗ −0.154∗∗∗ 0.578∗∗∗ 0.076∗∗∗ 0.046 0.068∗∗

(0.067) (0.042) (0.059) (0.024) (0.063) (0.034)
scale(WHC) 0.238∗∗∗ 0.047 −0.188∗∗∗ −0.027 0.013 −0.001

(0.064) (0.040) (0.057) (0.023) (0.062) (0.033)
scale(Soil depth) −0.180∗∗∗ −0.014 0.132∗∗ 0.013 −0.044 −0.001

(0.063) (0.039) (0.055) (0.023) (0.060) (0.032)
scale(Precipitations) −0.200∗∗ −0.020 0.197∗∗∗ 0.005 −0.155∗ −0.066

(0.083) (0.051) (0.073) (0.030) (0.080) (0.042)
scale(Temperature) 1.017∗∗∗ 0.283∗∗∗ 0.307∗∗ 0.041 0.379∗∗ 0.021

(0.161) (0.101) (0.141) (0.059) (0.156) (0.083)
scale(Humidity) −0.225 −0.148∗ 0.209∗ 0.020 −0.062 0.023

(0.138) (0.084) (0.120) (0.049) (0.133) (0.069)
scale(Radiation) −0.277 −0.080 −0.546∗∗∗ −0.013 0.176 0.108

(0.176) (0.108) (0.153) (0.063) (0.170) (0.089)
Constant −0.638∗∗∗ −0.116∗∗∗ −0.191∗∗∗ 0.074∗∗ −1.814∗∗∗ 0.001

(0.055) (0.043) (0.061) (0.029) (0.039) (0.040)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
σ2 1.616 0.572 1.244 0.197 1.476 0.390
Akaike Inf. Crit. 12,802.470 8,650.725 11,900.890 4,673.891 12,353.180 7,225.390

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
scaled explanatory variables. Reference= Pastures
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9.6 Estimation results from the SAR model

Table 13: Spatial Autoregressive Regressions of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.854∗∗∗

(0.010)
FOlog93 0.890∗∗∗

(0.007)
URlog93 0.830∗∗∗

(0.009)
scale(Arable returns03) 0.297∗∗∗ 0.017 0.069∗∗∗ −0.005 0.242∗∗∗ 0.034∗∗

(0.028) (0.015) (0.024) (0.010) (0.029) (0.015)
scale(Pasture returns03) −0.145∗∗∗ −0.002 −0.110∗∗∗ −0.010∗∗∗ −0.132∗∗∗ −0.029∗∗

(0.026) (0.005) (0.023) (0.003) (0.024) (0.013)
scale(Forest returns03) −0.040 0.028∗ 0.170∗∗∗ −0.0001 0.067∗∗∗ −0.016

(0.025) (0.017) (0.022) (0.010) (0.024) (0.019)
scale(POP03) −0.164∗∗∗ −0.037∗∗∗ −0.026 −0.011 0.113∗∗∗ 0.010

(0.022) (0.013) (0.018) (0.008) (0.021) (0.011)
scale(Elevation) −0.652∗∗∗ −0.069 −0.460∗∗∗ −0.132∗∗∗ −0.564∗∗∗ −0.063∗

(0.075) (0.043) (0.057) (0.024) (0.076) (0.038)
scale(Slope) −0.309∗∗∗ −0.116∗∗∗ 0.357∗∗∗ 0.069∗∗∗ 0.029 0.045∗

(0.051) (0.030) (0.039) (0.019) (0.067) (0.027)
scale(WHC) 0.197∗∗∗ 0.053∗∗ −0.146∗∗∗ 0.026 −0.027 −0.021∗∗

(0.046) (0.026) (0.039) (0.016) (0.034) (0.010)
scale(Soil depth) −0.131∗∗∗ −0.028 0.117∗∗∗ −0.038∗∗ 0.031 0.006

(0.046) (0.026) (0.039) (0.017) (0.056) (0.010)
scale(Precipitations) −0.248∗∗∗ −0.038∗∗ −0.005 −0.040∗∗∗ −0.063∗ −0.014

(0.030) (0.017) (0.010) (0.010) (0.037) (0.012)
scale(Temperature) 0.064 −0.090∗∗ 0.072∗ −0.027 −0.143∗∗ 0.050∗∗∗

(0.078) (0.036) (0.040) (0.026) (0.060) (0.017)
scale(Humidity) −0.094∗ −0.117∗∗∗ 0.034 −0.026 −0.209∗∗∗ −0.015∗∗

(0.057) (0.027) (0.028) (0.019) (0.050) (0.006)
scale(Radiation) −0.157∗∗ 0.042 −0.296∗∗∗ 0.012 0.143∗∗ −0.011

(0.071) (0.035) (0.043) (0.027) (0.063) (0.010)
Constant −0.275∗∗∗ −0.036 −0.058∗∗∗ 0.053∗∗∗ −0.982∗∗∗ 0.081∗∗∗

(0.024) (0.023) (0.019) (0.013) (0.043) (0.029)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
σ2 1.721 0.580 1.265 0.201 1.513 0.396
Akaike Inf. Crit. 12,962.830 8,684.350 11,939.190 4,694.791 12,403.390 7,243.951
Wald Test (df = 1) 1,091.723∗∗∗ 106.356∗∗∗ 2,162.109∗∗∗ 207.793∗∗∗ 479.396∗∗∗ 69.676∗∗∗

LR Test (df = 1) 845.807∗∗∗ 97.251∗∗∗ 1,397.558∗∗∗ 173.258∗∗∗ 405.499∗∗∗ 60.486∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
scaled explanatory variables. Reference= Pastures
The Wald and the LR test are the Wald and the likelihood ratio test for the significance of the spatial lag coefficient
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9.7 Estimation results from the SDM model

Table 14: Spatial Durbin Models of land use on 1993–2003

Arable Share Forest Share Urban Share
long run short run long run short run long run short run

ARlog93 0.831∗∗∗

(0.009)
FOlog93 0.893∗∗∗

(0.006)
URlog93 0.834∗∗∗

(0.008)
scale(Arable returns03) 0.342∗∗∗ 0.079∗∗∗ −0.119∗∗∗ −0.055∗∗∗ 0.148∗∗ 0.048∗∗

(0.050) (0.027) (0.010) (0.017) (0.058) (0.024)
scale(Pasture returns03) 0.005 0.004 0.042 0.033∗∗∗ −0.015 −0.029∗∗∗

(0.014) (0.014) (0.014) (0.004) (0.030) (0.011)
scale(Forest returns03) −0.031 0.011 −0.039 0.044 0.036 0.126∗∗∗

(0.048) (0.048) (0.048) (0.037) (0.052) (0.048)
scale(POP03) −0.100∗∗∗ −0.016 −0.011 −0.011 0.115∗∗∗ 0.009

(0.029) (0.029) (0.029) (0.008) (0.021) (0.014)
scale(Elevation) −0.768∗∗∗ −0.052 −0.476∗∗∗ −0.094 −0.831∗∗∗ −0.137∗

(0.111) (0.085) (0.097) (0.070) (0.120) (0.076)
scale(Slope) −0.443∗∗∗ −0.155 0.603∗∗∗ 0.076∗∗∗ 0.055 0.067

(0.070) (0.070) (0.058) (0.012) (0.098) (0.048)
scale(WHC) 0.226∗∗∗ 0.047 −0.165 −0.027 0.028 −0.003

(0.070) (0.070) (0.070) (0.070) (0.063) (0.063)
scale(Soil depth) −0.176∗∗∗ −0.014 0.106 0.014 −0.065 0.001

(0.065) (0.065) (0.065) (0.065) (0.067) (0.002)
scale(Precipitations) −0.203∗∗∗ −0.022 0.239∗∗∗ 0.006 −0.129∗ −0.068∗∗∗

(0.055) (0.052) (0.052) (0.052) (0.074) (0.026)
scale(Temperature) 1.086∗∗∗ 0.286 0.376∗∗∗ 0.050 0.399∗∗∗ 0.009

(0.160) (0.119) (0.138) (0.119) (0.119) (0.119)
scale(Humidity) −0.211 −0.147∗∗∗ 0.301∗∗∗ 0.026 −0.026 0.033

(0.136) (0.018) (0.036) (0.060) (0.060) (0.065)
scale(Radiation) −0.206 −0.080 −0.541∗∗∗ −0.019 0.189 0.113

(0.171) (0.171) (0.158) (0.171) (0.171) (0.073)
Constant −0.242∗∗∗ −0.109∗∗∗ −0.058∗∗∗ 0.061 −0.929∗∗∗ 0.013

(0.023) (0.019) (0.017) (0.019) (0.044) (0.028)

Observations 3,767 3,767 3,767 3,767 3,767 3,767
σ2 1.619 0.571 1.236 0.197 1.476 0.389
Akaike Inf. Crit. 12,803.420 8,648.834 11,865.140 4,671.029 12,349.980 7,223.800
Wald Test (df = 1) 1,278.793∗∗∗ 4.324∗∗ 2,047.633∗∗∗ 69.960∗∗∗ 516.272∗∗∗ 49.006∗∗∗

LR Test (df = 1) 904.656∗∗∗ 4.175∗∗ 1,307.732∗∗∗ 68.563∗∗∗ 424.817∗∗∗ 47.962∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
on scaled explanatory variables. Reference= Pastures
The Wald and the LR test are the Wald and the likelihood ratio test for the significance of the spatial lag coefficient
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9.8 Maps at the aggregated scale

Figure 1: Aggregated land use shares in 2003
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Figure 2: Aggregated land use variations on 1993–2003, in km2
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Figure 3: Out of sample 2003 predictions from individual mnl
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Figure 4: Raw distribution of 1998 aggregated land use shares
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Figure 5: Linearized distribution of 1998 aggregate land use shares
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