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Abstract

This paper extends the literature on the calculation and interpretation
of impacts for spatial autoregressive models with an exogenous variable in-
troduced in a nonlinear way. We show how the direct and indirect impacts
can be computed, theoretically and empirically, in such a case. Rather than
averaging the individual impacts, we suggest to plot them along with their
confidence intervals. We also explicitly derive the form of the gap between
impacts in the spatial autoregressive model and the corresponding model
without a spatial lag and show that it is higher for spatially highly con-
nected observations. We illustrate these results on the Boston dataset.
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1 Introduction

Spatial autoregressive (SAR) models are now widely used to analyze spatial eco-
nomic interactions in various applications. For example, such a model is appropri-
ate for the housing market since housing prices depend on prices of recently sold
neighboring homes (Anselin and Lozano-Gracia, 2008). This dependence struc-
ture comes from the fact that sellers presumably use information on neighbooring
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homes to determine the asking price. The use of a SAR model, besides providing a
richer characterization of the market, has important implications for impacts cal-
culations (for early statements of this issue, see Anselin and Le Gallo (2006), Kim
et al. (2003), Kelejian et al. (2006)). Indeed, their computation and interpretation
is less straightforward than in standard multiple linear a-spatial regression models:
any change in an explanatory variable for a given observation not only affects the
observation itself (direct impact) but also affects all other observations indirectly
(indirect impact).

LeSage and Pace (2009) show how to theoretically derive these marginal im-
pacts in SAR models. For n spatial observations, they obtain a n × n matrix of
impacts for one exogenous variable. In order to have a compact representation of
these impacts, they propose to report one direct impact equal to the average of
the diagonal elements of the matrix of marginal impacts and one indirect impact
equals to the average row sums of the non-diagonal elements of that matrix. How-
ever, when the exogenous variable of interest is introduced in a nonlinear way in
the SAR model (e.g. in the form of polynomial or splines function), averaging the
impacts in such a way is irrelevant.

In this paper, we extend the work of LeSage and Pace (2009) on impacts com-
putation and estimation when the exogenous variable of interest appears in a non-
linear way in a SAR model. We also derive the form of the gap between impacts
in the spatial autoregressive model and the corresponding model without a spatial
lag and show that it is higher for spatially highly connected observations.

The remainder of the paper is organized as follows. The second section presents
the theoretical derivation of direct and indirect impacts associated with a nonlinear
exogenous variable in a SAR model. The third section introduces the estimation
strategy which is applied on the well-known Boston housing dataset described
in the fourth Section. The obtained empirical results are presented in the fifth
Section. The sixth section concludes and comments on possible extensions.

2 Impacts in theory

Consider the following spatial autoregressive model1

y = ρWy +Xβ + f(z) + ε (1)

1Our approach can also be applied on spatial Durbin model.
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where y is the (n × 1) dependent variable that exhibits variation across spatial
observations, X is the (n × k) matrix of linear explanatory variables including
an intercept term, with the associated parameters β contained in a (k × 1) vec-
tor, z is the (n × 1) variable the impact of which on y is nonlinear, and W is a
specified constant (n× n) spatial weight matrix with the usual assumptions. This
variable z of interest is of dimension 1 and is additively separable from the others
X to simplify notations, the approch we propose can be easily extended to many
variables introduced nonlinearly with interaction effects between them. We also
assume that each term of the disturbance vector ε of dimension (n×1) is normally
and identically distributed with zero mean and variance σ2. The scalar ρ measures
the strength of the spatial dependence. f(·) is a linear-in-parameters function, for
instance a polynomial function of degree p: f(z) = ∑p

j=1 γjz
j, a spline2 function

of order p and q knots: f(z) = ∑p
j=1 γjz

j + ∑q
l=1 δl(z − tl)

p
+.

Equation (1) can be rewritten in the following reduced form

y = V (W )Xβ + V (W )f(z) + V (W )ε (2)

with

V (W ) = (In − ρW )−1 =



V11 V12 V13 · · · V1n
V21 V22 V23 · · · V2n
V31 V32 V33 · · · V3n
...

...
...

. . .
...

Vn1 Vn2 Vn3 · · · Vnn


and In the identity matrix of order n. Note that we assumed that the matrix
In − ρW is not singular to reach the reduced form in Equation (2).

In this paper, we are interested in the estimation of the partial derivative of y
with respect to changes in the nonlinear variable z in our SAR model. In models
containing a spatial lag, the measure of the partial derivative of the dependent
variable with respect to an explanatory variable is less straightforward than in
standard linear models. Indeed the standard linear regression interpretation of co-
efficient estimates (β̂q = ∂ŷ

∂xq
) as partial derivatives no longer holds in SAR model

since the matrix of explanatory variable is transformed by the n × n inverse ma-
trix V (W ). In such a model, any change to an explanatory variable for a given
observation affects the dependent variable of the observation itself (direct impact)
and potentially the dependent variable of all other observations (indirect impact)
through V (W ). We elaborate on this observation to derive the impacts for the

2See Hastie and Tibshirani (1990) for details.
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variable z introduced in a nonlinear way.

Starting from the reduced form in Equation (2), the matrix of responses to a
change of the nonlinear variable z on y is given by

∂y1

∂z1

∂y1

∂z2
· · · ∂y1

∂zn
∂y2

∂z1

∂y2

∂z2
· · · ∂y2

∂zn
...

...
. . .

...
∂yn
∂z1

∂yn
∂z2

· · · ∂yn
∂zn


=


V11fz(z1) V12fz(z2) · · · V1nfz(zn)
V21fz(z1) V22fz(z2) · · · V2nfz(zn)

...
...

. . .
...

Vn1fz(z1) Vn2fz(z2) · · · Vnnfz(zn)



with fz(z) the derivative of f(z).

Since we have an n×n matrix of impacts, the challenge is to find a way to com-
pactly report them. In the case of exogenous variables that enter linearly, LeSage
and Pace (2009) suggest to compute the average of the main diagonal elements
and the average of the off-diagonal elements of the impacts matrix to obtain a
summary measure of the direct impact and the indirect impact respectively. This
method of summarizing impacts, which should be seen as “the best we can do at
the moment”, for a constant effect is irrelevant when the effect of a variable as z
can be positive and negative at different parts of it support. Therefore, we propose
to plot the individual impacts (i.e. impacts of each observation) along with their
confidence intervals. The individual direct (IDI ) and total (ITI ) impacts of the
nonlinear variable z on yi are given by

IDIi = ∂yi
∂zi

= Viifz(zi) (3)

ITIi = ∂yi
∂z

=
n∑
j=1

Vijfz(zj) (4)

From these expressions, we can reach the individual indirect impact (III ) as
follows

IIIi = ITIi − IDIi (5)

3 Estimation strategy

To get the individual impacts for z, we proceed in two steps. We first estimate
the parameters of the SAR model, and then in a second step use them to com-
pute V (W ) and the derivative of f(z), i.e. fz(z) for each observation i. Let us
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begin with the estimation of the SAR model. We follow LeSage and Pace (2009)
who have shown how to estimate SAR models using a Bayesian methodology. We
briefly recall the approach in the next paragraph.3

The Bayesian model or alternatively the posterior distribution of the model
parameters up to a constant term is given by the product of the likelihood of the
available data (y, X and z) and the prior distributions of the parameters of the
model. To get the mean and variance for the model parameters, an option is to
numerically integrate the posterior distribution. Unfortunately, the form of the
posterior distribution is often complex, leading to intractable numerical integra-
tion. To circumvent this problem, we rely on the methodology known as Markov
Chain Monte Carlo (MCMC) to estimate the SAR model parameters. The general
idea behind MCMC is that rather than work with the posterior density of our
parameters, the same goal could be achieved by analyzing a large random sample
from the posterior distribution. Specifically, we use the Metropolis within Gibbs
sampling since our posterior distribution can be split in three posterior distribu-
tions: one of unknown form for ρ and two for σ2 and the parameters associated
to the linear and nonlinear variables following a Gamma inverse and a Normal
distributions respectively.

Once we have estimated the parameter of our model, to get the individual
impacts, we need the derivative of f(z), i.e. fz(z). A straightforward way of getting
it is to analytically compute the derivative of f(z). For instance, when f(z) is a
polynomial function of degree p, its derivative is given by: fzi

(z) = ∑p
j=1 jγjz

j−1.
However, in some cases (e.g. splines functions), using the analytical derivative of
f(z) may not be that simple and it is better to proceed differently. In this paper,
we make use of simulations to get the derivatives. Starting from the SAR model,
the derivative of f(z) for observation i is given by

fz(zi) = lim
ξ−→0

ŷi2 − ŷi1
ξ

(6)

where ŷi1 and ŷi2 are predictions of yi from the model in Equation (1) using z and
z + ξ respectively. All the estimated parameters except those related to f(z) are
set to zero when calculating ŷi1 and ŷi2.

3A full presentation of the procedure can be found in LeSage and Pace (2009, pp. 124-153).
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4 Data

We use the Boston dataset for the application. It is available to the R community
as part of the library spdep (Bivand et al. (2013), Bivand and Piras (2015)). The
dataset reports for each of the units of observation (506 in total), the (corrected)
median value of owner-occupied homes in the Boston area (CMEDV ), together
with several variables which might help to explain its variation such as: per-capita
crime rate (CRIM ) by town, nitric oxides concentration (NOX), proportions of
non-retail business acres per town (INDUS), proportions of units built prior to
1940 (AGE), weighted distances to five Boston employment centers (DIS), index
of accessibility to highways (RAD), property-tax rate (TAX) per $ 10,000, pupil-
teacher ratios by town (PTRATIO); proportion of blacks (B) and percentage of
the lower status of the population (LSTAT ).

5 Results and discussion

We apply the methodology described above to Boston house prices. Specifically,
we estimate the SAR specification in Equation (1), where y is the median value of
owner-occupied homes (CMEDV ), X the vector of the following linear variables:
TAX , INDUS , CRIM and AGE . The nonlinear variable z is represented by DIS .
f is a cubic spline function used to capture the potential nonlinear effect of DIS
on the dependent variable.

5.1 Results of the Bayesian estimation

We use the following starting values for the parameters of our Bayesian model: 0.5
for σ2, 0.1 for ρ and 0.5 for each of the remaining parameters (MCMC starting
values). We generate a total of 10,000 simulations, and then discard the first 1,000
as a “burn-in” – to mitigate startup effects. The Metropolis-Hastings algorithm
used to draw values for ρ perform very well: the acceptance probability is 48%4

The chains of retained simulations are presented in the appendix A and show no
sign of nonstationarity. Note that we provide some more formal diagnostics to
the visual (graphical) convergence check. Specifically, we monitor the convergence
of our chains of parameters using diagnostics suggested by Geweke (1992) and
Gelman and Rubin (1992). They provide no evidence against convergence for our
chains.

4LeSage and Pace (2009) state that the optimal acceptance rate (i.e., the one which minimizes
the autocorrelations across the sample values) is between 40% and 60%.
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Table 1 presents point estimates (i.e. posterior means), associated measures of
uncertainty (i.e. posterior standard deviations) and the upper and lower bound
of a 95% highest posterior density interval5 (columns labeled Q2.5% and Q97.5%)
for the parameters of our model.

Table 1: Parameter estimates

MEAN STD Q2.5 Q97.5

CONST 22.8258 2.3160 18.2907 27.4274
SPLINES1 -13.4145 3.4085 -20.1183 -6.7841
SPLINES2 -9.3020 3.2576 -15.7103 -2.8356
SPLINES3 -11.8411 4.1098 -19.7626 -3.9209
CRIM -0.1101 0.0342 -0.1781 -0.0432
TAX -0.0051 0.0022 -0.0094 -0.0007
AGE -0.0595 0.0131 -0.0847 -0.0336
INDUS -0.3057 0.0603 -0.4241 -0.1863
σ2 25.9011 1.6983 22.7676 29.4221
ρ 0.6890 0.0290 0.6285 0.7448

We wish to compare the Bayesian MCMC sampling procedure and the maxi-
mum likelihood method results.6 To this end, the maximum likelihood estimates
for the SAR model and sample data are presented in Table 2 alongside Bayesian
estimates based on MCMC sampling scheme. We also report the t-statistics for
the two estimations methods as in LeSage and Pace (2009, pp. 143-145). We
observe that all estimates and t-statistics are nearly identical, suggesting they
would produce similar inferences. It appears that all coefficients and the spatial
lag parameter are significant.

5This coverage region is analogous to the 95% confidence intervals.
6The maximum likelihood estimation results are available in the appendix B.
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Table 2: Comparison of SAR model estimates

Max. Likelihood Bayesian M-H

Estimates t-stat Estimates t-stat

CONST 22.5830 9.1977 22.8258 9.8556
SPLINES1 -13.3724 -3.9837 -13.4145 -3.9355
SPLINES2 -9.2372 -2.8515 -9.3020 -2.8554
SPLINES3 -11.7986 -2.9195 -11.8411 -2.8811
CRIM -0.1086 -3.2452 -0.1101 -3.2144
TAX -0.0050 -2.2547 -0.0051 -2.2828
AGE -0.0590 -4.4745 -0.0595 -4.5202
INDUS -0.3029 -5.0132 -0.3057 -5.0650
σ2 25.2490 25.9011
ρ 0.6949 22.805 0.6890 23.6795

5.2 Impacts estimation

For each of the 10,000 iterations, we calculate the individual direct, total and
indirect impacts of the variable DIS introduced in a nonlinear way in the specifi-
cation. Let us focus on the individual direct impacts to clearly get how they are
calculated. For observation i, we compute for each iteration the individual direct
impact for the corresponding value of DIS using the parameter estimates and the
derivative of the nonlinear function f , with equation (6). We end up with a chain
of individual directs impacts corresponding to the number of iterations. As above,
we discard the first 1,000 draws. On the remaining chain, we calculate the mean
and the 2.5% and 97.5% percentiles which correspond respectively to the estimate
of the individual direct impacts and its 95% confidence interval. The procedure is
repeated for each of the 506 observations of DIS . The estimation of the individual
total and indirect impacts follows the same procedure.

Figure 1 plots for each value of DIS , the direct and indirect impacts along with
their confidence intervals. In the top panels of Figure 1, we plot the direct and
indirect impacts of DIS for each observation i. We have also applied a LOESS
regression to these two sets of data point to get some more readable curves of
impacts (bottom panels)

Figure 1: Representation of direct and indirect individual impacts

Two important observations follow from Figure 1. First, we observe that the
impacts (direct and indirect) are negative, suggesting that Boston employment
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centers are attractive: the closer a house is to city center, the higher its price
and the price of its neighbors. Second, the marginal impacts are nonlinear: the
more DIS increases, the less are the magnitude of the impacts. This means that
an increase of DIS of one mile has a higher impact on values of homes close to
the center compared to the others. The non-linearity of the impacts implies that
taking their average is indeed irrelevant in our case, and may lead to erroneous
conclusions.

To better see the nonlinear effect of DIS , we directly plot it against the depen-
dent variable CMED.7 For that purpose, for the value of DIS for observation i, we
calculate for each iteration its prediction using the parameter estimates. Note that
we use the unbiased predictor proposed by Kelejian and Prucha (2007, page 367)
which is compatible with our SAR model in Equation (2): the prediction is based
on the information set Λ = {Z,W} where Z is the vector of linear and nonlinear
exogenous variables. To get rid of the effect of the other exogenous variable and
focus only on DIS , we set as in Fox (1987) their values to their mean. From there,
we follow the same procedure as in the calculation of marginal impacts to end with
an estimate of the effect of distance and the 95% confidence interval. The proce-
dure is repeated for each of the 506 values of DIS . The obtained plot (see Figure
2) clearly shows the nonlinear effect of DIS on the endogenous variable CMED.

Figure 2: Impact of DIS

5.3 Structure of W and impacts in nonlinear models

In this section, we analyze the link between the spatial structure of the observations
and the form of the impacts in nonlinear models in the context of the application.
To that purpose, let us begin with the individual direct impacts. From Equation
(3), we know that when there is no spatial autoregressive term (i.e. when the
model is a-spatial), the individual direct impact is fz(zi). Therefore, the difference
between a-spatial and spatial models individual direct impacts is the following

GAPDirect
i = fz(zi) [1− Vii] (7)

Two observations emerge from the expression in Equation (7). First, the gap
between the two individual direct impacts depends on the structure of spatial
connections between observations (wij, i, j = 1, ..., n). Second, from the Leontief
expansion, the elements of V (W ) are always positive since the estimate of the
spatial autoregressive coefficient is positive. Therefore, the sign of the gap between

7The coefficients associated to splines variables in Table 1 are not directly interpretable.
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the individual impacts in the a-spatial and the spatial model is of the sign of fz(zi).
As a consequence, fz(zi) is the upper bound (when fz(zi) is negative) or the lower
bound (when fz(zi) is positive) estimation of the individual impacts in the spatial
autoregressive model.

Let us move now on individual total impacts. From Equation (4), we can
deduce that for an a-spatial model the individual total impact is fz(zi), which
is the same as the individual direct impact.8 Therefore, the difference between
a-spatial and spatial individual total impacts is the following

GAP Total
i = fz(zi) [1− Vii] +

n∑
j=1,j 6=i

Vijfz(zj) (8)

The aforementioned observations, made for individual direct impacts, are also
valid for individual total effects. In addition, one can observe that the magnitude
of the gap between the individual total impacts is higher than that of individual
direct impacts: | GAP Total

i |>| GAPDirect
i |.

To confirm these observations, we plot for each observation i the direct and
total impacts against fz(zi), which is the total impact for the a-spatial model. The
procedure is repeated for each observation in the Boston dataset and the obtained
results are plotted in Figure 3.

Figure 3: Impact in the a-spatial model and in the SAR model

The analysis of Figure 3 confirms our previous observations. First, the deriva-
tive fz(zi), indeed appears as the upper bound estimation of the total impact.
This means in our case that the estimated total impacts in the a-spatial model
are overestimated if the data generating process is a SAR model. Second, the
gap is higher in absolute value for total impacts compared to direct ones. Third,
the gap between the two curves is increasing as we move towards the center (low
distances). Since the observations close to the center are often the most connected
(dense zones), that suggests that the more connected is the observation, the more
is the gap (i.e. the gap depends on spatial connections among observations).

To confirm this intuition, we focus on the structure of the spatial weights ma-
trix. Specifically, we calculate for each observation, its number of neighbors defined
as the number of houses in a 1,000 meters buffer. Then we plot for each observa-
tion the gap between fz(zi) and the total impact against its number of neighbors.
The result is presented in Figure 5 and clearly shows that central observations are

8This makes sense as there is no individual indirect impact in a-spatial models.
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associated with higher gap. This result is interesting as it states that the more an
observation is linked to the others, the more important is the bias if spatial au-
tocorrelation is wrongly omitted. In the Boston housing market, our result states
that median housing prices decrease more rapidly for houses located in dense areas
than for the houses located in sparse areas.

This result has another important implication: it confirms that averaging the
impacts may overlook important heterogeneity even if the exogenous variable of
interest is linear. Indeed, for a linear exogenous variable xk with the associated
parameter βk, the individual direct impact is Viiβk. If βk is for example positive,
only considering the average leads to the underestimation of the impact of xk for
observations in central areas and the overestimation in sparse areas. Therefore, in
specific applications where considering the heterogeneity of impacts is important,
for instance to design place-based policies, it is better to take advantage of the
“noise” introduced by spatial autocorrelation between observations rather than
smoothing the impacts by averaging them, even for linear exogenous variables.

Figure 4: Relation between the number of neighbours and the GAP

6 Conclusion

We provide in this paper a framework for the estimation of impacts associated
with an exogenous variable introduced in a non linear way in spatial autoregressive
model. We also show that instead of averaging the impacts, one should consider
to plot them along with their confidence interval. Indeed, averaging the impacts,
besides being inappropriate for nonlinear exogenous variable, smooths spatial in-
teraction effects which may be of interest in spatial autoregressive models.
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A Graphical convergence check

Figure 5: MCMC chains

B The maximum likelihood estimation results

Table 3: SAR estimation

Dependent variable:

SPLINES1 −13.372∗∗∗
(3.357)

SPLINES2 −9.237∗∗∗
(3.239)

SPLINES3 −11.799∗∗∗
(4.041)

CRIM −0.109∗∗∗
(0.033)

TAX −0.005∗∗
(0.002)

AGE −0.059∗∗∗
(0.013)

INDUS −0.303∗∗∗
(0.060)

Constant 22.583∗∗∗
(2.455)

Observations 506
Log Likelihood -1,574.987
ρ 0.69493
σ2 25.249
Akaike Inf. Crit. 3,169.974
Wald Test 520.068∗∗∗ (df = 1)
LR Test 303.378∗∗∗ (df = 1)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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