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Abstract

This supplementary file contains the supporting information for the paper mentioned above.
It contains additional insights about the theoretical structure of the Binary Selection Model
(section 1), the data used (section 2), and the results (section 3) of our French application.
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1 Theory of the Binary Selection Model

1.1 Estimated probabilities

To provide additional theoretical insights from the proposed Binary Selection Model (BSM), we
consider the particular Generalized Linear Model case (GLM) of the more general framework
presented in the main text. Both tree species presence and land-use choice are assumed to be linear
functions of random predictors. From the notations of the main text, we set :

fp(Xi) =a+ Bz, and  fo(Xi, Wi) =0+ vz + Ow;. (1)

We also restrict the predictors z; and w; to be of dimension 1 to simplify the notations. Next,
we assume that the errors of both equations are jointly distributed according to a bivariate Normal
distribution of zero means, unit variances, and correlation p. This parametrization corresponds
to the typical case of a bivariate probit used in most applications of selection models [4, 7]. The
normalization of variances is necessary because the coefficients of binary response models are only
identifiable up to scale. This reads as:
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The theoretical probability of potential presence of the tree species of interest on the site i
is Prob(e; < a + px;) = ®(a + Bz;), and the probability of having a compatible land use is
Prob(& < n+ yx; + 0w;) = ®(n + va; + Ow;). P(+) is the cumulative distribution function of a
standardized Normal distribution and, for future reference, ¢(-) is the associated density function.
The biased probability (P-O) — see equation (4) in the main text — can be noted as:

Prob(me = 1| 23, w;) = Prob(e; < a+ Bx; N & < n+ vyx; + Ow;) (3)
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1.2 Land-use selection bias

The integral of the right-hand side of Equation 5 does not have an analytical closed form without
using quadrature procedures or linearization. This makes the intuitions about the effect of p more
tricky to obtain. Note that the biased probability (P-A) of the main text faces the same problem, as
Prob(me = 1| x;,mg = 1) = Prob(m. = 1 | ;, w;)/®(n + ya; + Ow;).

Computing the second order Taylor approximation of the probability (P-A) around p = 0 leads
to the following expression:

o(a+ Bx;) n+yz;+0w;
rEeram N I LU

~ ®(a+ Br;) + ppa+ Bri) A(n + yai + Ow;). (7)

Prob(me =1 | zj,mpy =1) = ®(a + Ba;) +p

We define the function A(u) = ¢(u)/®(u) as the inverse Mill’s ratio, a well-known conditional
expectation used to correct the selection bias in linear regression models [4]. Through extensive
Monte Carlo simulations, [6] shown that this approximation is accurate for a wide range of value of



p (ie., for | p| £ 0.8). In particular, the quality of the approximation depends on how far is p from
zero. Note that these approximations are only used here to provide some intuitions about the sign
and the size of the land-use selection bias, the empirical application presented in the main text is
based on a Full Penalized Likelihood procedure which does not depend on them.

Because, by definition, density and cumulative distribution functions are both positive, previous
Equation 7 shows unambiguously the direction of the bias when using the probability (P-A) instead
of the structural probability of interest ®(a + fx;). As it is stated in the main text, this bias is:

Positive when the errors terms are positively correlated. The true probability of potential presence
is over-estimated by classical presence-absence SDMs

Negative when the errors terms are negatively correlated. The true probability of potential presence
is under-estimated by classical presence-absence SDMs

For the other classical SDMs, namely presence-only (PO) SDMs, the same second order Taylor
linearization allows to write the biased probability obtained as:

Prob(me = 1| x;, w;) = ®(a + Bz;) X ©(n+ ya; + Ow;) + pdp(a + Bxi)p(n + yxi + Ow;).  (8)

The linear approximation maintains the general results for p = 0 presented in the main text,
e.g., biased probabilities (P-O) have to be divided by the probability of having a compatible land
use (i.e., Prob(my =1 | 25, w;) = ®(n + yx; + Ow;)) to be unbiased. One additional insight from the
second order Taylor linearization operated here is that the absolute value of the bias from predicting
probability (P-A) as a true potential presence is increasing with the deterministic part of the utility
difference n + yx; + fw;. Hence, bias from classical P-A SDMs are higher on the sites the most
economically suitable for forest (i.e., the less dependent on land-use changes).

1.3 Exclusion restrictions

In the absence of additional economic predictors w;, the BSM is technically identified but only
by the non-linearity of the smooth conditional expectation A(-), i.e., without additional, external
information [4, 7|. This situation is unsatisfactory, as it is shown by Equation 7 of this supplementary
file, where, in the absence of wj;, the correction for selection enters in the model as a nonlinear
function only of the covariate x;. Then, the only difference between the selection effect and the
true effect of the environmental covariate z; is the nonlinear structure of A(-). This situation is
unsatisfactory because, first, we deal with selection bias by imposing functional form assumptions
that are exogenous to the data we analyze and, second, in practice there is often so little variation
in A(-) compared to the variation in z; so that the BSM is unidentified.

One powerful way of improving identification of the BSM is to include extra covariate(s) w;
which appear(s) only in the economic equation of land-use choices. [11] shown that using additional,
orthogonal covariate(s) in the selection equation can improve drastically the precision of the estimation
by decreasing multi-collinearity. [5| found that the presence of exclusion restrictions is more important
than the assumption about the distribution of errors. The economic returns from compatible and
incompatible land uses are very intuitive candidates that are shown to be relevant in our application.
They act as instrumental variables, producing exogenous variations in the probability of having a
compatible land use, all other things equal (e.g., the environmental requirements for the tree species).
The instrumental variables should affect the probability of making a particular land-use choice but
should not have any direct effect on the potential probability of tree species presence. By including
these variables, one insures that the selection effect varies independently of the true effect and that
the BSM is not exclusively identified from functional form assumptions [7].



1.4 Spatial covariances

In order to illustrate the dependence between the ecological and economical latent variables in the
main text, we use what we call spatial covariances. In particular, we decompose the total spatial
covariance pr between these two gradients as the sum of an observed and a unobserved terms
(respectively noted po and py). This decomposition is based on the following expressions, obtained
by substituting the formulas for p; and w; (respectively equations 1 and 2 in the main text) in the
definition of the covariance between two continuous variables:

cov(pi, ;) = cov | fp(Xi) — &4, fo(Xi, Wi) — &] 9)
= cov [ fp(Xi), fo(Xi, Wi)] + p- (10)

We use the fact that, by definition, cov [fp(Xi),fl-] = cov [fg(Xi, Wi),ei] = 0. Previous terms are
then normalized by the product of the standard deviations of the latent variables u; and wu;, namely

or = \/ 1+ ag X \/ 1+ 03. Hence, we obtain the decompositions reported in Table 3 of the main

text, where every term is inside the unit interval:
pr = cov [, ;] /or and po = cov [ f,(X;), fo(Xi, Wi)] Jor and py = p/or. (11)

1.5 Predictions from BSMs

In the same fashion that the total spatial covariance contains an observed and unobserved parts,
looking at the dependence between economical and ecological gradients require to take into account
the correlation between errors. To construct Figure 4 of the main paper and Figures 9 to 15 in this
SI file, we use the observed values of land use my that, jointly with errors’ correlation, allows to
represent the full covariance between economical and ecological gradients. By using the notations of
Greene (1998), we set s =2 x my — 1 to obtain:

Prob(m, = 1lmy, X) =my x Prob(my, = 1my; =1, X) + (1 — my) x Prob(m, = 1lm, =0, X)
(X, W), p(X)sp) (1= m )‘P(—fe(Xa W), fp(X); —p)
(f(X, W) O e (X W)
_P(s x [l X, W), fp(Xi); s X p)
D(s x fo(X,W))

(12)

(13)

The major difference with classical predictions is that my is included in the information set used
to perform predictions, so more information is used.
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2 Data description

estimated using probit-linked functions for both Generalized Linear Models (GLMs) and Generalized
Additive Models (GAMs). While other models exist for generating SDMs in the literature (e.g.,
through maximum entropy, simulated annealing, neural networks), we argue that they are also
sensitive to the land-use selection bias studied here as they all assume errors independently distributed
from land-use choices. Hence, the bias presented is more general than the GLM and GAM cases.
Taking into account selection bias in more complex models is an interesting issue that we put outside
the scope of this paper.

We assume that functions f,(X;) and fo(X;, W;) are additive polynomials of order 2 in GLMs
and penalized additive splines in GAMs. As mentioned above, P-O SDMs consist in estimating
fp(Xi) using the whole data sample while P-A SDMs restrict the sample to forested sites (see Table
1 of SI). Both classical SDMs are estimated with R, using the widely used mgcv package [10]. BSMs
are compatible both with the GLM and GAM frameworks, while they estimate f,(X;, W;) jointly
with f,(X;) and take into account the potential absence of independence between errors. BSMs
are estimated with the package SemiParBIVProbit available on CRAN [3|. BSMs require exclusion
restrictions through the variables W; for technical reasons presented in Section 1.3 of this SI. BSMs
allowed us to estimate the correlations between errors of the land-use choices and the ecological
equation and therefore to infer the potential interactions between the land-use choices and the
responses of tree species. Such interactions are studied through what we call spatial covariances,
a formal definition of them is available at Section 1.4 of SI. Finally, the details for performing
predictions from BSMs are presented in Section 1.5 of SI.

The detailed results obtained from the BSM estimated using GLMs and bivariate Normal errors
or with semiparametric GAMs were quantitatively similar and are provided in SI. We performed
the GAMs analysis to ensure the robustness of the GLM results since GAMs reduce the errors due
to model misspecification and therefore reduce the risk of misleading interpretations of the error
correlation between the ecological and economical equations. We also estimated models with errors
based on copula functions without founding significant differences.

2.1 Data

The BSMs models were applied over France under historical environmental conditions to four
widespread tree species with contrasted distributions (Figure 1): sessile oak (Quercus petraea),
pubescent oak (Quercus pubscens), common beech (Fagus sylvatica) and silver fir (Abies alba).

2.1.1 Land use and species distribution data

Land use and species presence / absence data were derived from the French national forest inventory
which provides a systematic record of tree species presence/absence on a regular 1km grid over the
mainland territory (Figure 1). This dataset therefore allowed to separate land uses in two categories:
forest and non-forest (Figure 1). To test for the effect of spatial resolution on BSMs calibration
and predictions, the dataset was upscaled at three different resolutions 2km?, 4km? and 8 km? in
accordance with the environmental data. The upscaling procedure was straightforward: For a pixel
to indicate the presence (of a species or of the land use forest) at the upper resolution, it must include
at least one pixel where the species or the land use is indicated present at the higher resolution (see
Figure 1 below).



2.1.2 Environmental data

The environmental predictors were computed with the same climatic (temperature, precipitations,
etc.) and pedo-topographic (water holding capacity, slope, etc.) databases used in [2]. In the present
study, to test the effect of the spatial resolution, all the environmental variables were scaled at 2km?,
4km? and 8km? resolutions. Climate variables were derived from the SAFRAN re-analysis which
includes temperature, rainfall, and radiation on a 3 hourly basis at 8 km? resolutions [12]. These
variables were averaged at a monthly time step and downscaled at 2 km? and 4 km? resolutions
using a thin plate spline interpolation procedure with 3 predictors (elevation, latitude and longitude),
implemented in the packages fields and raster in R [8]. This methodology has been validated
with surface observations of temperature and rainfall over a region of southern France by [9]. From
the downscaled climatic variables, we derived 6 variables considered critical to plant physiological
function and survival as in [2], which are summarized in Table 2. The slope and exposure data were
computed by applying the terrain function of the raster package of R to digital elevation models
at each resolution. The 1km French soil data base developed by the INRA (Infosol Unit, INRA,
Orleans) and described in [2] was was averaged at the different resolutions.

Table 1: Tree species presences and prevalences according to land use.

For the three spatial resolutions of interest (2, 4, and 8 km), our data contain respectively 134,328
and 33,626 and 8,427 grids on the whole contiental France. For each resolution, the first row of
the Table below reports the number of grids where a considered species is observed (presence), the
second rows report the % of forest that these grids represent and the third rows the % of all grids
(i.e., prevalence).

Resolution Statistics Q.petraea  Q.pubescens  F.sylvatica A.alba

2 km Presence (# of grids) 8693 4660 8641 3404
Prevalence (% of forest) 20.61 11.05 20.49 8.07
Prevalence (% of all) 6.47 3.47 6.43 2.53

4 km Presence (# of grids) 4717 2502 4598 1810
Prevalence (% of forest) 21.51 11.41 20.97 8.25
Prevalence (% of all) 14.03 7.44 13.67 5.38

8 km Presence (# of grids) 1965 1139 1720 655
Prevalence (% of forest) 25.73 14.91 22.52 8.58
Prevalence (% of all) 23.32 13.52 20.41 7.77

To include realistic environmental conditions and reduce multicollinearity, we selected the first
two axes of a principal component analysis (PCA) based on monthly climate variables and the first
axis of a PCA made on pedo-topographic variables (see Figure 2).
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Figure 2: Principal component analysis of raw climatic and pedo-topographic variables.
The labels of the initial raw variables are described in Table 2 of this SI. In our regression analysis, we
keep only the 2 best principal axis of climatic variables and the first principal axis of pedo-topographic
variables. The 2 climatic principal axis account respectively for 56.5 and 39.9% of the total variance
of climatic variables, and the pedo-topographic axis accounts for 45.4%.
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2.1.3 Economic variables

Previous variables are also used in the econometric equation of land-use choices, in addition to some
proxies of economic returns from the work of [1]. They approximated the monetary returns from
crops by the land prices from the French ministry of agriculture in 2005, available at a regional scale
named Petites Régions Agricoles. Monetary returns from forests were approximated by multiplying
raw productions and unitary wood prices, divided by forest acreages. Monetary returns from urban
area were approximated by population densities. A full description of the sample and the variables
is reported in Table 2.

Table 2: Summary statistics for predictors used in models (4km).
See section 2.3 about empirical implementation in the main text for the details of computations and
downscaling.

Statistic Mean St. Dev. Min Max

MAT : Mean of Annual Temperatures (°C) 10.908 1.997 —4.293 14.927
MAP : Cumulative Annual Precipitations (mm) 934.951 144.681 761.930 1,996.730
ETP : Potential Evapotranspiration (mm) 701.569 73.899 552.751 886.242
VPD : Vapor Pressure Deficit (KPa) 0.543 0.151 0.067 1.164
MRH : Mean of Relative humidity (%) 83.837 3.018 64.202 93.464
MRG : Mean of annual Solar Radiations (MJ) 5,159.772 430.648 4,318.510  6,586.610
WHC : Water Holding Capacity (mm) 130.816 51.038 12.000 487.006
SLP : Mean of the Slope (degree) 0.087 0.103 0.000 0.641
SPT : Geographical Aspect (radian) 3.178 0.452 1.024 5.369
PCC1 : Climate PCA axis 1 (scaled) 0.000 1.834 —5.708 6.296
PCC2 : Climate PCA axis 2 (scaled) 0.000 1.547 —2.288 9.434
PCT1 : Topography PCA axis 1 (scaled) 0.000 1.209 —5.114 5.529
RT.FOR : Returns from forest (00 € /ha.yrs) 1.088 0.130 1.000 1.792
RT.AGR : Returns from croplands (00 € /ha.yrs) 1.184 0.102 1.000 2.630
RT.POP : Population Density (000 Pop./km?) 0.183 0.503 0.005 15.168

3 Additional results

3.1 Regression tables
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Table 3: Raw GLM results at 2 km resolution.
For the 4 tree species of interest (in columns) we report the estimated coefficients and standard
errors (in parenthesis) for the two equations: the land-use choice and the SDM equations. The values
in brackets for p represent the confidence intervals at 95%.

Q.petraea Q.pubescens F.sylvatica A.alba
Variables  Land use S.D.M. Land use S.D.M. Land use S.D.M. Land use S.D.M.
(Intercept) —1.155 —1.036 —1.347 —1.972 —1.117 0.171 —1.112 —0.377
(0.052) (0.009) (0.049) (0.012) (0.053) (0.053) (0.053) (0.079)
pCcC1 —0.064 —0.188 —0.074 0.545 —0.067 —0.339 —0.064 —0.339
(0.003) (0.006) (0.003) (0.01) (0.004) (0.018) (0.004) (0.023)
I(PCC1?) —0.017 —0.126 —0.016 —0.112 —0.016 —0.034 —0.017 —0.009
(0.001) (0.003) (0.001) (0.003) (0.001) (0.004) (0.001) (0.005)
PCC2 0.186 0.079 0.197 0.174 0.193 0.043 0.189 0.199
(0.006) (0.009) (0.006) (0.009) (0.006) (0.014) (0.006) (0.024)
I(PCC2%) —0.079 —0.159 —0.083 —0.303 —0.081 —0.034 —0.079 —0.05
(0.002) (0.005) (0.002) (0.012) (0.002) (0.006) (0.002) (0.008)
PCT1 —0.238 —0.114 —0.237 —0.055 —0.238 0.018 —0.237 —0.035
(0.005) (0.008) (0.005) (0.005) (0.005) (0.017) (0.005) (0.025)
I(PCT1?) 0 —0.005 0 —0.002 0.01 —0.001 —0.005
(0.002) (0.004) (0.002) (0.002) (0.004) (0.002) (0.006)
RT.FOR 0.94 1.051 0.891 0.93
(0.027) (0.026) (0.028) (0.027)
RT.AGR —0.126 —0.066 —0.105 —0.15
(0.037) (0.033) (0.038) (0.037)
RT.POP —0.024 —0.01 —0.04 —0.031
(0.009) (0.007) (0.009) (0.009)
p 0.95 [0.89,0.98] 0.96 [0.89,0.99] —0.75 [—0.81, —0.66] —0.82 [—0.87,—0.76]
N 134.328 42.173 134.328 42.173 134.328 42.173 134.328 42.173
R? 0.0911 0.1266 0.0911 0.0532 0.0911 0.1499 0.0911 0.2272

Table 4: Raw GAM results at 2 km resolution.
For the variables that enter non-parametrically, we report the x? values corresponding to the joint
significance of the associated terms. For the variables that enter parametrically, we report the
coefficients and standard errors, as above. The values in brackets for p represent the ionfidence
intervals at 95%.

Q.Petraea Q.pubescens F.sylvatica A.alba
Variables Land use S.D.M. Land use S.D.M. Land use S.D.M. Land use S.D.M.
s(PCC1) 1053.172 2285.084 1915.397 1326.27 1034.575 567.221 1006.165 317.979
s(PCC?2) 1101.953 1517.165 2300.703 1308.538 149.44 1283.092 171.417
s(PCT1) 2726.503 304.577 2167.857 3082.75 164.49 3058.386 58.76
RT.FOR 1.016 1.104 0.91 0.929
(0.0286) (0.0274) (0.0307) (0.0306)
RT.AGR —0.207 —0.21 —0.061 —0.085
(0.0392) (0.0373) (0.0411) (0.0406)
RT.POP —0.041 —0.007 —0.047 —0.044
(0.00892) (0.00784) (0.00928) (0.0092)
p 0.89 [0.81,0.93] 0.76 [0.71,0.8] —0.44 [-0.61, —0.25] —0.54 [—0.68, —0.35]
N 134.328 42.173 134.328 42.173 134.328 42.173 134.328 42.173
R? 0.0981 0.1318 0.0908 0.0449 0.0997 0.1553 0.0997 0.2396
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Table 5: Raw GLM results at 4 km resolution.

For the 4 tree species of interest (in columns) we report the estimated coefficients and standard
errors (in parenthesis) for the two equations: the land-use choice and the SDM equations. The values
in brackets for p represent the confidence intervals at 95%.

Q.petraea Q.pubescens F.sylvatica A.alba
Variables  Land use S.D.M. Land use S.D.M. Land use S.D.M. Land use S.D.M.
(Intercept) —0.588 —0.282 —0.806 —1.504 —0.599 —0.096 —0.468 —1.038
(0.115) (0.017) (0.111) (0.019) (0.119) (0.029) (0.118) (0.064)
pCC1 —0.07 —0.202 —0.081 0.747 —0.076 —0.492 —0.069 —0.504
(0.007) (0.009) (0.007) (0.017) (0.007) (0.015) (0.007) (0.023)
I(PCC1?) —0.023 —0.156 —0.022 —0.145 —0.021 —0.033 —0.023 —0.019
(0.002) (0.005) (0.002) (0.004) (0.002) (0.005) (0.002) (0.007)
PCC2 0.25 0.083 0.264 0.081 0.267 0.226 0.259 0.408
(0.012) (0.017) (0.012) (0.02) (0.012) (0.018) (0.012) (0.03)
I(PCC2?%) —0.099 —0.167 —0.101 0.071 —0.103 —0.123 —0.1 —0.13
(0.004) (0.008) (0.004) (0.006) (0.004) (0.008) (0.004) (0.01)
PCT1 —0.35 —0.118 —0.344 —0.384 —0.345 —0.062 —0.344 —0.174
(0.012) (0.017) (0.012) (0.019) (0.012) (0.023) (0.012) (0.041)
I(PCT1?) 0.008 0.007 0.005 —0.056 0.004 0.028 0.008 0.005
(0.005) (0.008) (0.005) (0.009) (0.006) (0.007) (0.006) (0.011)
RT.FOR 1.273 1.511 1.317 1.298
(0.064) (0.062) (0.066) (0.065)
RT.AGR —0.03 —0.066 —0.049 —0.149
(0.078) (0.074) (0.08) (0.079)
RT.POP —0.051 —0.025 —0.063 —0.059
(0.015) (0.011) (0.015) (0.015)
p 0.8 [0.59,0.92] 0.94 [0.79,0.98] —0.6 [-0.7,—0.49] —0.6 [-0.71, —0.46]
N 33.626 21.927 33.626 21.927 33.626 21.927 33.626 21.927
R? 0.156 0.1593 0.156 0.2855 0.156 0.2206 0.156 0.2869

Table 6: Raw GAM results at 4 km resolution.

For the variables that enter non-parametrically, we report the x? values corresponding to the joint
significance of the associated terms. For the variables that enter parametrically, we report the
coefficients and standard errors, as above. The values in brackets for p represent the confidence
intervals at 95%.

Q.Petraea Q.pubescens F.sylvatica A.alba
Variables Sel. Eq. S.D.M. Sel. Eq. S.D.M. Sel. Eq. S.D.M. Sel. Eq. S.D.M.
s(PCC1) 370.667 2159.439 632.72 1282.201 342.545 821.763 323.918 1049.308
s(PCC?2) 488.29 968.408 617.647 505.011 288.411 476.171 327.08
s(PCT1) 1033.99 205.993 1068.834 1012.308 70.453 1044.651 141.251
RT.FOR 1.408 1.68 1.385 1.358
(0.066) (0.0686) (0.0711) (0.0716)
RT.AGR —0.287 —0.18 —0.149 —0.216
(0.0797) (0.0818) (0.0836) (0.0855)
RT.POP —0.065 —0.039 —0.077 —0.072
(0.0145) (0.0128) (0.0152) (0.0153)
p 0.98 [—0.98,1] 0.78 [0.71,0.83] —0.66 [-0.76,—0.54] —0.22 [—0.42,0.02]
N 33.626 21.927 33.626 21.927 33.626 21.927 33.626 21.927
R? 0.1618 0.1753 0.1618 0.0779 0.162 0.2202 0.162 0.3012
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Table 7: Raw GLM results at 8 km resolution.
For the 4 tree species of interest (in columns) we report the estimated coefficients and standard
errors (in parenthesis) for the two equations: the land-use choice and the SDM equations. The values
in brackets for p represent the confidence intervals at 95%.

Q.petraea Q.pubescens F.sylvatica A.alba
Variables ~ Land use S.D.M. Land use S.D.M. Land use S.D.M. Land use S.D.M.
(Intercept) 0.666 0.242 0.093 —0.664 0.766 —0.109 0.466 —1.159
(0.417) (0.022) (0.34) (0.024) (0.364) (0.022) (0.386) (0.03)
pPCC1 0.02 —0.153 —0.006 0.58 0.001 —0.413 0.001 —0.351
(0.017) (0.013) (0.012) (0.016) (0.013) (0.012) (0.013) (0.015)
I(PCC1?) —0.015 —0.079 —0.01 —0.073 —0.013 —0.031 —0.013 —0.021
(0.003) (0.007) (0.002) (0.001) (0.003) (0.005) (0.003) (0.006)
pPCC2 0.185 —0.163 0.169 0.214 0.183 0.214 0.179 0.234
(0.023) (0.018) (0.022) (0.021) (0.023) (0.017) (0.023) (0.025)
I(PCC?2?%) —0.034 0.011 —0.033 —0.048 —0.038 —0.033 —0.037 —0.029
(0.006) (0.005) (0.006) (0.006) (0.006) (0.005) (0.006) (0.006)
PCT1 —0.264 —0.175 —0.275 —0.436 —0.301 —0.29 —0.28 —0.588
(0.034) (0.039) (0.032) (0.03) (0.034) (0.027) (0.034) (0.043)
I(PCT1?) —0.08 —0.067 —0.079 —0.039 —0.077 —0.121 —0.082 —0.126
(0.015) (0.017) (0.014) (0.016) (0.014) (0.012) (0.014) (0.016)
RT.FOR 1.644 1.897 1.352 1.594
(0.313) (0.278) (0.255) (0.277)
RT.AGR —0.547 —0.334 —0.372 —0.341
(0.215) (0.132) (0.216) (0.213)
RT.POP —0.121 —0.151 —0.116 —0.117
(0.03) (0.004) (0.03) (0.03)
p —0.54 [-0.87,0.1] 1 [-1,1] 0.62 [0.36,0.8] 0.08 [—0.2,0.34]
N 8.426 7.638 8.426 7.638 8.426 7.638 8.426 7.638
R? 0.0914 0.1363 0.0914 0.2594 0.0914 0.0701 0.0914 0.3362

Table 8: Raw GAM results at 8 km resolution.
For the variables that enter non-parametrically, we report the x? values corresponding to the joint
significance of the associated terms. For the variables that enter parametrically, we report the
coefficients and standard errors, as above. The values in brackets for p represent the confidence
intervals at 95%.

Q. Petraea Q.pubescens F.sylvatica A.alba
Variables Land use S.D.M. Land use S.D.M. Land use S.D.M. Land use S.D.M.
s(PCC1) 66.101 524.234 940.136 200.721 69.622 1014.766 59.135 579.716
s(PCC?2) 71.055 59.191 70.208 70.011 96.334 65.786 55.146
s(PCT1) 133.107 202.64 67.595 119.272 127.688 111.746 176.876
RT.FOR 1.608 0.296 1.989 1.837
(0.24) (0.231) (0.32) (0.287)
RT.AGR —0.188 —0.438 —0.468 —0.683
(0.22) (0.172) (0.22) (0.227)
RT.POP —0.106 —0.118 —0.11 —0.134
(0.0305) (0.0202) (0.0332) (0.0322)
p 0.97 [-0.99,1] -1 [-1,1] —-0.75 [—0.87, —0.54] —0.47 [-0.7,—0.15]
N 8.426 7.638 8.426 7.638 8.426 7.638 8.426 7.638
R? 0.095 0.1453 0.095 0.1266 0.1 0.3358 0.1 0.3695
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3.2 Spatial Covariances

3.2.1 For GLM

Table 9: Decomposition of spatial covariance between ecological and economical latent
variables for GLM.

The formula used to decompose the total covariance between a observed term and an unobserved
term is described in Section 1.4 of this SI file. The results below show the importance of the
unobserved covariance to estimate the sign of the total spatial covariance.

TOTAL OBSERVED UNOBSERVED

Resol.  Species T CI 95% PO CI 95% U CI 95%

2 KM Q.petraca 0.707 [0.58,0.81] 0.143 0.06,023]  0.565 [0.53,0.58]
Q.pubescens 0.781 [0.65,0.88] 0.180 [0.1,0.27] 0.600 [0.55,0.62]
Fsylvatica ~ —0.568 [-0.66,-0.46]  0.007 [-0.04,0.05] —0.575 [-0.62, —0.51]
A.alba ~0.620 [£0.79,—0.44]  0.041 [-0.09,0.17]  —0.660 [-0.7,-0.61]

AKM Q.petraca 0.567 0.35,0.72] 0.136 0.04,023]  0.431 [0.31,0.49]
Q.pubescens 0.727 [0.52,0.87] 0.226 [0.1,0.35] 0.502 [0.42,0.53]
Fsylvatica ~ —0.325 [-0.43,-0.21]  0.078 0.03,0.12]  —0.403 [-0.46, —0.33]
A.alba —0.246 [—0.58,0.11] 0.153 [—0.1,0.41] —0.399 [—0.47,—0.3]

8SKM Qpetraca  —0.307 [-0.56,0.14] 0.020 [£0.03,0.07] —0.327 [-0.53,0.07]
Q.pubescens 0.712 [—0.43,0.75] 0.163 [0.12,0.2] 0.549 [—0.55,0.55]
F sylvatica 0.520 0.21,0.75] 0.153 0.02,029]  0.366 [0.19,0.47]
A.alba 0.258 [~0.11,0.63] 0.213 0.01,0.42]  0.044 [~0.12,0.21]

3.2.2 For GAM

Table 10: Decomposition of spatial covariance between ecological and economical latent
variables for GAM.

The formula used to decompose the total covariance between a observed term and an unobserved
term is described in Section 1.4 of this SI file. The results below show the importance of the
unobserved covariance to estimate the sign of the total spatial covariance.

TOTAL OBSERVED UNOBSERVED

Resol.  Species T CI 95% PO CI 95% U CI 95%

2 KM Q.petraca 0.774 [0.62,0.9] 0.110 [0.02,0.2] 0.664 [0.6,0.7]
Q.pubescens  0.735 [0.57,0.89] 0.113 [-0.01,0.23]  0.622 [0.58, 0.66]
F.sylvatica  —0.282 [~0.4, —0.13] 0.040 0.04,0.04] —0.322 [~0.44, —0.18]
A.alba —0.249 [-0.36, —0.1] 0.104 0.09,0.12]  —0.353 [-0.45, —0.22]

AKM  Q.petraca 0.777 [—0.61, 0.87] 0.119 [0.03,0.2] 0.658 [~0.65,0.67]
Q.pubescens 0.762 [0.55,0.96] 0.172 [0.01,0.33] 0.590 [0.54,0.63]
Fsylvatica  —0.409 [-0.51,-0.28]  0.045 0.01,0.00] —0.454 [-0.52, -0.37]
A.alba 0.094 [~0.09,0.3] 0.216 0.15,0.28)  —0.122 [-0.24,0.02]

8KM Q.petraca 0.725 [~0.63, 0.76] 0.057 0.05,007  0.668 [~0.67, 0.69]
Q.pubescens  —0.742 [—0.86,0.98] 0.060 [-0.06,0.18]  —0.803 [—0.8,0.8]
F.sylvatica  —0.295 [-0.44,-0.09]  0.127 0.05,02]  —0.422 [~0.49, —0.29]
A.alba —0.074 [-0.31,0.23] 0.199 000,03  —0.272 [~0.41, —0.07]
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3.3 Consistency of predictions

Table 11: Consistency between predictions of potential presence.

For each species and and scale, we report the root mean of squared errors (RMSE) of the predicted
probabilities relatively to the the BSM predictions at the finest 2 km scale. This Table allows to
evaluate the importance of taking into account the selection bias in fine scale models. For F.sylvatica
and A.alba, the BSM taking into account the land-use selection bias at 4 km produces better

prediction that classical SDM at 2km.

Species Scale BSM PO PA
Q.petraea 2km 0.00 0.00 0.19
4km 0.17 0.17 0.28
8km 0.46 0.39 0.43
Q.pubescens 2km 0.00 0.10 0.23
4km 0.14 0.14 0.19
8km 0.29 0.29 0.31
F.sylvatica  2km 0.00 0.48 0.35
4km 0.24 041 0.34
8km 0.33 0.33 0.31
A.alba 2km 0.00 0.33 0.29
4km 0.28 0.32 0.32
8km 0.31 0.30 0.31
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3.4 GLM response curves

3.4.1 For the Climate PCA 1

Figure 3: GLM response curves for Climate PCA Axis 1

Response curves are predicted probabilities of tree species presence with all the covariates fixed at
their sample means except the covariate of interest, the Climate PCA 1 axis here (we interpret it
as an index of water availability, see Figure 2 of the SI). Response curves below are differentiated
according to the model used (the three curves), the tree species (from the top to the bottom) and
the scale of the data (from the left to the right).
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3.4.2 For the Climate PCA 2

Figure 4: GLM response curves for Climate PCA Axis 2

Response curves are predicted probabilities of tree species presence with all the covariates fixed
at their sample means except the covariate of interest, the Climate PCA 2 axis here (we interpret
it as an index of climate aridity, see Figure 2 of the SI). Response curves below are differentiated
according to the model used (the three curves), the tree species (from the top to the bottom) and
the scale of the data (from the left to the right).
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3.4.3 For the Topo PCA 1

Figure 5: GLM response curves for Topography PCA Axis 1

Response curves are predicted probabilities of tree species presence with all the covariates fixed at
their sample means except the covariate of interest, the Topography PCA 1 axis here (we interpret
it as an index of flatness, see Figure 2 of the SI). Response curves below are differentiated according
to the model used (the three curves), the tree species (from the top to the bottom) and the scale of
the data (from the left to the right).
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3.5 GAM response curves
3.5.1 For the Climate PCA 1

Figure 6: GAM response curves for Climate PCA Axis 1

Response curves are predicted probabilities of tree species presence with all the covariates fixed at
their sample means except the covariate of interest, the Climate PCA 1 axis here (we interpret it
as an index of water availability, see Figure 2 of the SI). Response curves below are differentiated
according to the model used (the three curves), the tree species (from the top to the bottom) and
the scale of the data (from the left to the right).
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3.5.2 For the Climate PCA 2

Figure 7: GAM response curves for Climate PCA Axis 2

Response curves are predicted probabilities of tree species presence with all the covariates fixed
at their sample means except the covariate of interest, the Climate PCA 2 axis here (we interpret
it as an index of climate aridity, see Figure 2 of the SI). Response curves below are differentiated
according to the model used (the three curves), the tree species (from the top to the bottom) and
the scale of the data (from the left to the right).
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3.5.3 For the Topo PCA 1

Figure 8: GAM response curves for Topography PCA Axis 1

Response curves are predicted probabilities of tree species presence with all the covariates fixed at
their sample means except the covariate of interest, the Topography PCA 1 axis here (we interpret
it as an index of flatness, see Figure 2 of the SI). Response curves below are differentiated according
to the model used (the three curves), the tree species (from the top to the bottom) and the scale of
the data (from the left to the right).
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3.6 Potential / Effective
3.6.1 For GLM

Figure 9: Probabilities of potential presence according to land-use compatibility for
GLM
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3.6.2 For GAM

Figure 10: Probabilities
GAM
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according to land-use
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3.7 Maps of predicted GLM probabilities

Figure 11: Maps of predicted GLM probabilities for Q.petraea

A. BSM at 2km B. P-0 at 2km C. P-A at 2km

D. BSM at 4km E. P-O at 4km F. P-A at 4km

G. BSM at 8km . H. P-O at 8km A 1. P-A at 8km
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Figure 12: Maps of predicted GLM probabilities for Q.pubescens
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Figure 13: Maps of predicted GLM probabilities for F.sylvatica

A. BSM at 2km B. P-O at 2km C. P-A at 2km

D. BSM at 4km L E. P-O at 4km F. P-A at 4km

G. BSM at 8km I. P—A at 8km

27



A. BSM at 2km

D. BSM at 4km

G. BSM at 8km

Figure 14: Maps of predicted GLM probabilities for A.alba
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3.8 Maps of bias in predicted probabilities

Figure 15: Bias from predicted probabilities of presence from classical SDMs at 2 km.
The bias are computed as the difference between the probability predicted by the BSM and the
probability predicted by the classical SDM. Positive bias (green colors) indicates that classical SDMs
over-estimate the probability of presence. Negative bias (orange colors) indicates that classical SDMs
under-estimate the probability of presence.

(a) Bias from classical PO SDMs

A - Q.petraea B - Q.pubescens

C - Esylvatica

(b) Bias from classical PA SDMs

A - Q.petraea B - Q.pubescens

C - Esylvatica
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Figure 16: Bias from predicted probabilities of presence from classical SDMs at 4 km.
The bias are computed as the difference between the probability predicted by the BSM and the
probability predicted by the classical SDM. Positive bias (green colors) indicates that classical SDMs
over-estimate the probability of presence. Negative bias (orange colors) indicates that classical SDMs
under-estimate the probability of presence.

(a) Bias from classical PO SDMs

A - Q.petraea B - Q.pubescens

C - Esylvatica

(b) Bias from classical PA SDMs

A - Q.petraea B - Q.pubescens

C - Fsylvatica E - A.alba
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Figure 17: Bias from predicted probabilities of presence from classical SDMs at 8 km.
The bias are computed as the difference between the probability predicted by the BSM and the
probability predicted by the classical SDM. Positive bias (green colors) indicates that classical SDMs
over-estimate the probability of presence. Negative bias (orange colors) indicates that classical SDMs
under-estimate the probability of presence.

(a) Bias from classical PO SDMs

A - Q.petraea B - Q.pubescens

C - Esylvatica

(b) Bias from classical PA SDMs

A - Q.petraea B - Q.pubescens

C - Fsylvatica E - A.alba
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3.9 Validation of predictions

Figure 18: True Skill Statistics (TSS) from internal (IFN) and external data (Eu-
roVegMap, EVM).

TSS takes into account both omission and commission errors, and success as a result of random
guessing, and ranges from -1 to +1, where +1 indicates perfect agreement and values of zero or less
indicates a performance no better than random.
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