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Abstract

The effectiveness of epidemics control policies is hindered by individual noncompliance.
The consequences of such behaviors are not directly assessable from observational data because
noncompliance is also driven by individual risk. In this study, we offset the reverse causation
bias by leveraging variations in the economic incentives to comply with mandatory insecticide
application between French vineyards. We find a high causal effect of noncompliance on
the presence of a major epidemic vine disease at the national scale of France. Our benefit-
cost analysis shows that decreasing noncompliance could yield large individual and collective
benefits as long as the external damages caused by insecticides are not too high.
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1 Introduction

Individual self-protection responses to outbreaks of pests and infectious diseases are not always
sufficient to control their spread (Costello et al., 2017). The gap between individual motivations
and collective outcomes may require coordination of private efforts through coercive policies when
collective stakes are high. Such interventions are often designed under the assumption of perfect
compliance, but compliance depends on individuals’ heterogeneous perceptions and incentives
(Funk et al., 2009; Bargain and Aminjonov, 2020). Thus, noncompliance is a pervasive threat to the
efficiency of policies.
Yet large-scale evaluations of the effects of noncompliance are scarce in the scientific literature
(Shimshack, 2014), principally because of a lack of data due to high monitoring costs and hidden
fraudulent individual behaviors (van Rooĳ and Sokol, 2021). Another key empirical challenge for
ex-post policy evaluation is to identify the causal effect of compliance on contaminations. Gener-
ally, infection (the outcome) is both caused by noncompliance (the regressor) and a determinant
of compliance, as individuals strategically comply when the perceived risk of infection is high.
This feedback effect produces a reverse causation bias between the outcome and the regressor in
observational (i.e., non-experimental) studies, which poses a threat to the identification of causal
effects (Imbens and Wooldridge, 2009; Larsen et al., 2019).
In this article, we overcome this issue by exploiting the features of a recent French program against
Flavescence dorée (FD), a widespread epidemic disease threatening European vineyards (Tramontini
et al., 2020). Using a novel fine-scale data set on pesticide sales, we leverage spatial variations in
private incentives to comply (value of potential losses reflected in vineyard prices) to identify the
causal impact of noncompliance on the spatial distribution of the disease.

2 Context and data

FD is a severe grapevine epidemic disease which lowers the grape quantity and quality of infected
vines, and leads to their death (Chuche and Thiéry, 2014). In France, a large outbreak led to a
new ambitious control programin 2013. The French control policy establishes mandatory control
perimeters (MCPs) where monitoring and insecticide applications against the vector are manda-
tory. Each year, the MCPs include all vineyards of municipalities that are adjacent to known FD
clusters. Within an MCP, all winegrowers are required to treat their vineyards one to three times
yearly using a product approved against the FD vector.
We analyze a dataset merging (i) official data on FD presence, MCP delimitations, and the numbers
of mandatory applications at the municipal level from the French Ministry of Agriculture, (ii) newly
published data on pesticide sales at the level of postal codes (i.e., groups of 5.6 municipalities on
average); and (iii) historical average vineyard prices at the AOC level (see Appendix section A).
Mandatory monitoring from the 2013 policy allowed us to finely map the presence of the disease
nationally (Fig. 1A). Over 2016–2017, more than 800 municipalities reported at least one FD cluster,
accounting for approximately two-thirds of French vineyards.
The raw data available on pesticide sales are aggregated across crops and targets, from a detailed
list of products registered at the postal code of the buyers’ head offices. We consider six shortlists
of the main insecticide products approved for use against the FD vector on grapevines, and
show that they all yield similar results. The lists include the 𝑁 ∈ {10, 15} most used products
regionally in postal codes specialized in winegrowing within MCPs. We dropped products that
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count for more than 𝜏 ∈ {1, 5, 100} percent of the acreage in postal codes without vineyards (see
the Appendix Section A). Fig. 1B gives the spatial distribution of compliance rates within MCPs.
We obtain national compliance rates which hover around 80%, but these measures are noisy as
not all approved products are considered. Our empirical method explicitly accounts for these
measurement errors.

Figure 1: Spatial distribution of the main variables

Note: Compliance rates and vineyard prices are truncated at 300% and e100,000/ha, respectively. Compliance rates
in panel (B) are computed for municipalities within MCPs with our preferred list (𝑁 = 15, 𝜏 = 1). The data are from
2016. Using the 2017 data and the other shortlists of products lead to similar maps. Panel (C) displays vineyard prices
in municipalities with more than 1 ha of vineyards.

Fig. 1C gives the spatial distribution of average vineyard prices. The initial data are available for
the 371 French AOCs between 1990 and 2018. Since these precise spatial delineations typically
overlap several municipalities, we allocated the AOC-specific prices at the municipal level from
their official distribution at the plot level (see Appendix Section A). AOCs are official geographical
indications introduced in 1935 to indicate vineyard quality for wine production. The AOC is the
main quality signal available to wine buyers and is, consequently, the main driver of both wine
and vineyard prices (Ay, 2021; Mérel et al., 2021).

3 Empirical method

We adapt the standard IV estimation method to explicitly account for the measurement errors
in the compliance rates, computed using various restricted lists of insecticide products (see Ap-
pendix Section B). Our main identifying assumption that price variations across AOC borders are
exogenous to the current probability distribution of FD presence. Under this assumption, AOC
delineations correlate with FD presence only because they drive winegrowers’ compliance with
insecticide applications.
The compliance rates 𝐶 are the ratios of the actually treated acreage 𝐴 computed from pesticide
sales to the acreage 𝑆 mandated to be treated. Because the measurement error applies to 𝐴 but
not 𝑆, we specify the first stage estimation as the regression of 𝐴 on 𝑆, the product between 𝑆 and
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the centered natural logarithm of vineyard prices 𝑉 , and a vector Q of variables controlling for the
drivers of the measurement errors. We expect a larger measurement error on 𝐴 in less specialized
postal codes, where the selected insecticide products are more likely to be used for other crops
such as orchards. Q thus includes the acreages of alternative agricultural land uses, i.e. permanent
cropland other than vineyards, annual cropland, and grassland.

𝐴 = 𝜆0𝑆 + 𝜆1𝑆 ×𝑉 + Q⊤γ + 𝜐. (1)

Because the logarithm of vineyard price is centered, dividing both sides by 𝑆 shows that 𝜆0 and
𝜆1 are respectively the compliance rate at the average vineyard price and the marginal effect of
the logarithm of vineyard price on compliance rates. In the second stage, we set the acreages of
alternative land uses to zero (Q = 0) in order project out the measurement errors associated with
alternative land uses. We estimate the following linear probability model for the binary variable 𝐼
indicating FD presence:

𝐼 = 𝛽0 + 𝛽1(�̂�0 + �̂�1𝑉) + 𝜀. (2)

The estimated �̂�1 measures the causal effect of compliance on FD presence, which is used in the
benefit-cost analysis of the text. In both estimation stages, reported standard errors are robust
to heteroskedasticity and spatial auto-correlation. In the Appendix Section C, we check that
our results are robust to a wide range of robustness checks. In particular, we test alternative
estimation methods, including the more classical one-step IV estimator and a large panel of spatial
autoregressive models, and design a method to account for imperfect FD monitoring.

4 Results

Effect of vineyard price on compliance Table 1 gives the ordinary least-squares (OLS) estimates
of the regression of the actually treated acreage (computed from insecticide sales) on (i) the acreage
to treat according to the MCPs of the FD control policy, (ii) the interaction between this acreage
to mandatory treat and the centered logarithm of vineyard price, and (iii) the shares of acreage in
alternative land uses. We ran this regression for the six different lists of insecticide products, for
all postal codes in the MCPs pooled over the 2016–2017 period.
All the estimated coefficients in Table 1 are of the expected signs, with 𝑅2 ranging from .75 to .81.
The coefficients in the first row give the average compliance rate at the average vineyard price after
controlling for measurement errors from alternative uses of insecticide products. They range from
55% to 73% depending on the product list considered. The third row shows that a 10% increase
in vineyard price raises the average compliance rate by 1.3 to 2.1 percentage points. For all six
regressions, the vineyard price instrument is strong according to the usual Fisher statistics. Also
expected, alternative insecticide uses cause the treated acreages to increase with the proportion of
annual crops and other permanent crops, and to decrease with the proportion of grassland.
The strong effect of the price instrument on compliance rates is robust across all product lists.
Intuitively, the average compliance rate increases with the number of selected products 𝑁 and
when the specificity parameter 𝜏 decreases (when the less vine-specific products are dropped
from the restricted lists). In the Appendix Section C, we show that these first stage results are also
robust to the inclusion of other control variables including landscape, climate, grape varieties, and
agricultural structures.
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Table 1: First-stage OLS regressions about the determinants of compliance rates

Outcome: acreage actually treated against the FD vector
𝑁 = 10 𝑁 = 15

𝜏 = 1 𝜏 = 5 𝜏 = 100 𝜏 = 1 𝜏 = 5 𝜏 = 100

Acreage to treat (ATT) 0.573∗∗∗ 0.565∗∗∗ 0.579∗∗∗ 0.677∗∗∗ 0.714∗∗∗ 0.730∗∗∗
(0.019) (0.022) (0.022) (0.023) (0.026) (0.025)

ATT × log. price deviation 0.167∗∗∗ 0.130∗∗∗ 0.148∗∗∗ 0.191∗∗∗ 0.198∗∗∗ 0.218∗∗∗
(0.028) (0.033) (0.032) (0.034) (0.039) (0.037)

Share in permanent crops 1.130∗∗∗ 1.509∗∗∗ 2.269∗∗∗ 1.512∗∗∗ 2.023∗∗∗ 2.751∗∗∗
(0.257) (0.325) (0.287) (0.331) (0.376) (0.319)

Share in annual crops 0.052∗∗∗ 0.107∗∗∗ 0.105∗∗∗ 0.085∗∗∗ 0.172∗∗∗ 0.169∗∗∗
(0.010) (0.015) (0.015) (0.013) (0.017) (0.016)

Share in grasslands -0.029∗∗∗ -0.045∗∗∗ -0.030∗∗∗ -0.041∗∗∗ -0.056∗∗∗ -0.045∗∗∗
(0.012) (0.013) (0.013) (0.014) (0.016) (0.015)

Observations 1,586 1,586 1,586 1,586 1,586 1,586
R-squared 0.804 0.746 0.760 0.804 0.782 0.797
F-stat for weak instrument 35.80 36.08 33.92 42.28 39.82 40.86

Notes: All regressions pool data from 2016 and 2017, with year and region as fixed effects. Standard errors in
parentheses and 𝐹-statistics for weak instruments are corrected for spatial autocorrelation as presented in Appendix
Section B.

Causal effect of compliance The second stage consists in regressing the FD presence on the
compliance rates predicted only by the instrument. Fig. 2 gives the OLS estimates of these second
stages with a linear probability specification of FD presence. For all lists of insecticide products,
we find that increasing the compliance rate significantly lowers the probability of FD presence.
The point estimates of the causal effect range from −.6 to −.34. They are higher in absolute value
with smaller 𝑁 regardless of the specificity parameter 𝜏. We obtain relatively wide robust 95%
confidence intervals, a common feature of IV methods as they favor consistency over efficiency.
Taken together, the reported confidence intervals span values from −1 to −.1 with a preferred
median estimate of −.45, which suggests that increasing compliance by 10 points would reduce
the probability of FD presence by 4.5 points. In the Appendix Section C, we show that the
estimated coefficients are remarkably stable across more than 60 alternative specifications, with
point estimates of the causal effects of compliance on FD presence ranging from −.6 to −.3.

Benefits from increasing compliance Vine plants infected by FD must be replaced for production
to resume. Because new plants mature only after a few years, the cost of an FD contamination
can be approximated by a given number of years of production loss. Following the Ricardian
approach (Mendelsohn et al., 1994), we consider that current vineyard prices 𝑉 are the sums of
the expected annual returns 𝑅/(1 + 𝑟) over the future periods discounted by a rate 𝑟 > 0 (Ay and
Gozlan, 2020). The expected annual return from wine production is 𝑅 = 𝑟×𝑉 . Because all infected
plants must legally be replaced, we consider that an infection causes a production loss over 𝑘 years.
If noncompliance increases the probability of infection by Δ𝑝. The resulting expected per ha cost
is:
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Figure 2: Causal effect of compliance from second-stage OLS regressions

Note: All estimations were conducted on the 1,586 postal codes as in the first stages. The confidence intervals are built
using standard errors accounting for spatial autocorrelation (Appendix Section B).

Δ𝑝
𝑘Õ

𝑠=1
𝑅/(1 + 𝑟)𝑠 = Δ𝑝 ×𝑉[1 − (1 + 𝑟)−𝑘]. (3)

Our median calibration is 𝑟=5% and 𝑘=5.1 Nationally, vineyard acreage within MCPs comprises
about 550,000 ha, with an average vineyard price of e32,000/ha that yields an average return
of e1,600/ha/year. Fig. 3A shows the expected benefits from a 10-point increase in the average
compliance rate, considering that FD presence in a given municipality is a risk to all its vineyards.
Our preferred causal estimate combined with the median calibration suggests that this 10-point in-
crease in compliance corresponds to a total expected discounted benefit ofe171 million (e15.5/ha/year).
This suggests that noncompliance with mandatory pest control causes a high economic cost due
to avoidable infections and production losses. This result is robust over a plausible range of values
for the discount factor and the number of years of production losses following a contamination.
We provide a more detailed economic evaluation in Appendix Section D including the spreading
dynamics of the disease inside a postal code, the role of monitoring efforts, and the replacement
costs. Calibrations of this more extended model suggests the above calculations underestimate the
cost of noncompliance.

Benefit-cost analysis Pushing these calculations further, we compare these estimated benefits
with the private costs of compliance. For a total area to treat of about 1 million ha (550,000 ha
of vineyard within MCPs multiplied by an average number of yearly treatments around 2), we
consider an average cost for one insecticide application of e35/ha (which includes both the cost of
purchasing the insecticide product and the cost of applying it). Increasing overall compliance by
10 points would therefore cost an additionale3.5 million of private expense annually. Keeping the
discount factor at 5%, the corresponding discounted cost of the 10-point increase of the average

1Once a plant is replaced, wine-growers have to wait at least 3 years to produce wine, and we add 2 more years
because of poor yields and quality from young plants.

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 3: Economic evaluation of noncompliance with pest control policy

(A) Discounted costs for 10 percentage points increase in noncompliance (million euro)
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(B) Threshold values for the negative externalities from policy compliance
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Note: Our estimate ofe171 million reported in the text corresponds to five years of production loss and a discount factor
of 5% in panel (A). For this preferred set of parameters, panel (B) displays the threshold values for external damages
above which increasing compliance is not socially welfare improving.
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compliance rate ise70 million. Compared with the expected benefits computed above, the benefit-
cost ratio of increasing compliance is 171/70= 2.45. Fig. 3B shows the sensitivity of this value to
the causal effect and to the private cost of compliance. The benefit-cost ratio increases sharply for
smaller values of costs and higher effects of compliance. The ratio is always greater than 1, except
for the combination of extremely conservative values.
The total cost of noncompliance includes the environmental and health impacts of insecticides. Our
results imply a threshold value for these damages under which increasing compliance improves
total social welfare. If health and environmental damages are lower than the difference between
the total benefits from decreasing FD presence and the private cost of compliance for winegrowers,
more compliance is socially desirable. This leads to a threshold value of 171–70= e101 million for
the discounted damages, ore5.05 million annually with a 5% rate. Combined with the total acreage
to treat of 1 million ha by year, this suggests that increasing compliance would be detrimental to
society if the external damage associated with the mandatory insecticide application is larger than
about e50/ha/year. Fig. 3B shows the sensitivity of this threshold to the value of the causal effect
and the private cost of treatment.

Discussion

Mandatory insecticide treatments may seem at odds with the public health and environmental
objectives to decrease pesticide use, due to widespread evidence of residues (Tang et al., 2021)
and growing knowledge about their hidden damages (Beketov et al., 2013; Larsen et al., 2017;
Lai, 2017; Taylor, 2020) Despite the growing importance of this issue, comprehensive cost-benefit
assessments of pesticides use remain elusive. In France, a 2021 report BASIC (2021) evaluates the
direct costs of pesticide use (water quality, greenhouse gases, and professional diseases) at e340
million, and the indirect costs (biodiversity and all human diseases) at e6,216 million. Dividing
these aggregate costs by the 19.15 million ha of agricultural used area (excluding grassland, with
only 6% of permanent crops) frames the total cost of all pesticides across all crops in France between
e17/ha and e335/ha, to be compared to our threshold of e50/ha only for insecticide applications
targeting the FD disease that is quite close to the lower bound. On the benefits side, several studies
suggest that significant cuts in pesticide use (ranging from 30% to 50%) would have only small
consequences on agricultural yields or profits (Jacquet et al., 2011; Hossard et al., 2014; Lechenet
et al., 2017). Although we do not estimate externality costs, our results contribute to document
maximum values allowing for economically sound policies. Our case study, based on large-
scale observational data and addressing the reverse causation bias, shows that noncompliance
contributes to spread a disease at a large scale. This results in high economic losses and may
further extend the duration of mandatory treatments.
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A Data construction

We assemble a data set at the postal code level (𝑁 = 6, 300) from several sources. This section
describes the sources, and how we build the variables used in the main text. Table A.1 in this
supplementary information file reports the summary statistics of all data gathered.

A.1 Sources

FD presence and 2013 control policy. The French Ministry of Agriculture provided us with a
data set at the municipal level (𝑁 = 35, 300) for the period 2013–2017 containing (i) the presence
of FD, (ii) the vineyard acreages in 2012, (iii) the number of mandatory insecticide applications
according to the control policy, and (iv) the share of monitored acreage (used in Section C). Because
of a methodological change in 2015, FD presence and monitoring variables are only usable for the
years 2016 and 2017. The number of annual treatments varies from zero to three, depending on
the proximity to the FD cluster and the local knowledge from experts. We aggregate these data at
the postal code level (i.e., groups of 5.6 municipalities on average) for each year to obtain the total
vineyard acreage to treat, a dummy variable indicating FD presence, and the share of monitored
vineyards.

Vineyard prices. We built the vector of vineyard price by combining two sources. First, we
collected for each year between 1995 and 2017 the average price for each appellation d’origine contrôlée
(AOC, 𝑁 = 371) from the website of the French Ministry of Agriculture (https://www.agreste.
agriculture.gouv.fr). Second, we matched these prices with the map of AOCs produced by the
French Institut National des Appellations d’Origine (INAO), available at https://www.geoportail.
gouv.fr. AOC delineations date from 2020, but most of them were created in the early 20th century.
The price proxy at the postal code level is given by the average of the AOC prices weighted by the
surface of each AOC in each municipality within each postal code.

Insecticide sales. The data on insecticide sales were recently made available by the French water
agency (Agence de l’eau) at the website https://www.data.eaufrance.fr. They provide the total
quantities purchased of each certified product for each year between 2013 and 2018. They are
georeferenced at the postal code level of the buyer’s head office. Using recommended dosages and
the period of officially approved use available at the ANSES website (www.anses.fr), these data
allow to compute the acreages actually treated against FD in each postal code in 2016 and 2017. To
do so, we need to identify the products mainly and specifically used to against the FD vector. The
next Section A.2 presents our strategy to address this issue.

Control variables. We use data from the 2010 French agricultural census (https://www.agreste.
agriculture.gouv.fr), initially available at the municipal level, to build the land use variables
(noted X in Section B hereafter). We also collect additional data to build control variables and
assess the robustness of our causal results to these potential counfounders. From the same 2010
census data, we compute the number of wine farms, the mean acreage of each wine farm, the
number of workers in wine farms, the number of workers by acreage in wine farms, and the
average gross margin for each wine farm at the postal code level. From the 2018 Corine Land
Cover data (available at https://land.copernicus.eu/pan-european/corine-land-cover), we
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compute the mean size of vineyard plots, the share of semi-natural acreages, the landscape shape
index, and the Shannon diversity index for each postal code. Because all grape varieties are not
equally threatened by FD (Eveillard et al., 2016) and because the choices of grape varieties are legally
constrained within AOCs, we merge for each postal code the percentage of the AOCs that allow the
main 9 French grape varieties. Lastly, we use municipal data from Météo-France to compute average
climate variables. From the 1990-2010 period, we average maximum temperature, cumulative
precipitations, number of rainy days, solar radiation, wind speed, relative humidity, number of
freezing cold days, and evapotranspiration to control the effect of climate on FD presence. Figure
A.1 gives the correlation matrix between these control variables.

A.2 Products selection

The French Agency ANSES has provided us with the list the all insecticide products allowed over
our study period for aerial application on vines against the leafhopper carrying the FD.1 The sale
data counts 108 of these products over the period 2016–2017.
Most of these products have multiple purposes. They can be used to target other insects threatening
vines, and to target similar insects for other crops. This is a source of measurement error in our
estimations of the treated areas, and in turn, in the compliance rates. Our strategy to mitigate
these errors is to select the products which are mostly used against the FD vector among the full
list of officially approved products. Specifically, we select the 𝑁 products for which the quantities
purchased can be used to treat the largest areas in postal codes specialized in vines within MCPs.
We define the specialized postal codes as those where the share of vines in the Utilized Agricultural
Area (UAA) is larger than 𝑠𝑢 . We do not include permanent grasslands in the UAA because these
acreages generally do not receive any insecticide treatments. We consider the threshold 𝑠𝑢 = 70%,
so that 183 postal codes within MCPs are considered as specialized in vineyards nationally. The
conversion from the quantity purchased into actually treated areas relies on the recommended
dosage from ANSES. For each product, year, and postal code, we compute the area that could be
sprayed using all the quantity purchased at the recommended dosage.
Although we consider only the products that are approved specifically against leafhoppers in
vines, and then only select the products that are intensively used within highly specialized postal
codes within MCPs, this strategy may not convincingly eliminate the risk of including irrelevant
products. In particular, if one product is only partly used against the FD vector, and partly
used for another purpose, including either all or none of its quantity purchased would lead to a
measurement error in the compliance rate (either upward or downward).2 This is because the data
do not discriminate across uses made of each insecticide purchase. Another key issue is to exclude
the products that are not used specifically against the FD vector. To do so, we investigate whether
each product is significantly used in areas with few (if any) vineyards. In these postal codes, the
purchased products cannot be used against the FD vector because it is specific to vines. We define
the postal codes without vines as those where the share of vines in the UAA excluding grasslands
is below 𝑠𝑙 with 𝑠𝑙 = 0.1%. About 4,000 postal codes (63.5%) are considered without vineyards.
Lastly, we account for the heterogeneity across regions in the choice of products. If winegrowers in

1The data indicates the species of leafhopper against which each product has been proven effective. We keep only
the products approved against Scaphoideus titanus, which carries the FD disease. We remove products only approved
against Empoasca vitis, which is not proven to carry the FD disease.

2This issue is similar to that of a type II error, while the corresponding type I error would be to exclude a product
used against the FD vector. No strategy can guarantee a zero risk for both type I and type II errors.
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different regions use different insecticide products against the FD vector, then a selection strategy
based solely on national aggregates may not select the major products in each region. To address
this issue, we consider region-specific lists of products. We delineate four broad wine regions
containing the main French vineyards affected by the FD disease: Aquitaine which contains
the Bordeaux vineyards, Occitanie in the southern France, Bourgogne-Auvergne that lies from
Burgundy down to the the north of the Rhône valley, and PACA-Corse at the south-eastern corner.
Fig. A.2 below shows the regional rankings of the top 30 products according to their actual treated
area in the specialized postal codes. The dotted curve gives the cumulative share of the total area
that can be treated with all the 108 approved products. It shows that considering only the top
𝑁 = 15 products captures most of the quantity used in specialized postal codes, between 84%
in Occitanie up to 97% in Burgundy. This supports our strategy of using shortlists of products
regionally.
For each insecticide product on the x-axis if Fig. A.2, the green (resp. red) bar indicates the ratio
between the actual treated area and the total UAA without grassland among specialized postal
codes (resp. postal codes without vines) on the scale of the y-axis. In most cases, the top 30 products
selected in each region are not significantly used in postal codes without vines. Panels (a) to (c)
provide reassuring evidence that the products with the largest actually treated areas in specialized
postal codes are mostly specific to the FD vector, and only marginally used on other crops than
vines. The higher red bars in Panel (d) indicate that some selected products in south-eastern France
are often used in areas without vines (e.g., Klartan). It suggests that the products selected in this
region are also used on other crops, such as orchards, which are extensively cultivated in this part
of France.
Although most selected products are marginally used in postal codes without vines, we find some
products that are significantly used both in specialized postal codes and in postal codes without
vines. Including them would overestimate compliance rates, but excluding them would lead to
underestimating it. To evaluate the salience of this issue, we proceed to a sensitivity analysis. We
consider different lists of the top 𝑁 ∈ {10, 15} products mostly used in specialized postal codes,
after removing all products for which the ratio between the treated area and the UAA in postal
codes without vines is greater than 𝜏 ∈ {1, 5, 100}. Setting 𝜏 ∈ 100 leads to considering the top
𝑁 products in specialized postal codes, regardless of how they are used in postal codes without
vines.
These parameters yield six lists of products leading to six proxies of the area actually treated against
the FD vector in each postal code. Our estimation of the compliance rates is the ratio between this
actually treated area and the acreage to treat, which is the product between the acreage in vines
and the number of mandatory treatments from the control policy within MCPs. As expected,
setting 𝑁 = 10 instead of 𝑁 = 15, or 𝜏 = 1% instead of 𝜏 = 100%, yields slightly smaller values for
compliance rates. These parameters yield lists with fewer products, which increases the likelihood
of underestimating the true compliance rate but decreases the likelihood of overestimating it.
Depending on the postal code, the bias may be positive for all compliance rates, negative for all of
them, or positive for some and negative for others. Our identifying assumption only requires the
measurement error not to be systematically correlated with vineyard price, after controlling for
the shares of alternative agricultural land uses as presented more formally in Section B below.
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B Econometric framework

System of equations. We note 𝐼∗ the binary variable equals to one if Flavescence dorée (FD) is
present in a postal code within a Mandatory Control Perimeter (MCP) and zero if not. We consider
a linear probability model for the effect of the compliance rate 𝐶∗ on FD presence:

𝐼∗ = 𝛽0 + 𝛽1𝐶∗ + 𝜖. (B.1)

The causal parameter of interest is 𝛽1, measuring the effect of compliance on FD presence, as an
indicator about the effectiveness of the control policy. We expect 𝛽1 < 0, as insecticide application
would decrease FD presence through the regulation of its vector. Hence, vine growers face a
trade-off between the cost of insecticide application and the benefit they expect from decreasing
the risk of a FD contamination. Under constant marginal cost of insecticide application, effective
compliance depends both on the exposure to the infection and on the loss from an infection. As the
FD disease is incurable, we proxy the discounted value of the loss by the average per-ha vineyard
price 𝑉 for each postal code. We consider the linear projection of 𝐶∗ on 𝐼∗ and 𝑉 :

𝐶∗ = 𝛼0 + 𝛼1𝐼∗ + 𝛼2𝑉 + 𝜂 with E(𝜂 | 𝐼∗ ,𝑉) = 0. (B.2)

We expect 𝛼1 , 𝛼2 > 0 because a high exposure and a high loss from an infection provide more
incentives for wine-growers to comply. Without loss of generality, the error term 𝜂 is mean-
independent in equation (B.2) because it is a descriptive relationship (i.e., a linear projection)
without a causal meaning. However, the dependence from 𝐼∗ to 𝐶∗ in equation (B.2) implies
that the compliance rate 𝐶∗ is endogenous in equation (B.1) and, consequently, the ordinary least
squares (OLS) estimator of 𝛽1 is inconsistent. This reverse causation bias stems from the strategic
compliance of wine producers. It leads to a spurious correlation between the compliance rates
and the errors of the linear probability model (B.1) and a downward bias from an OLS estimation
(Frisvold, 2019). Controlling for 𝑉 in equation (B.1) is not relevant as long as E(𝐶∗𝜖 | 𝑉) =

𝛼1
1−𝛼1𝛽1

E(𝜖2 | 𝑉) ≠ 0.

Instrumental variable (IV) strategy. We rely on an IV strategy using 𝑉 as an instrument to
identify the causal parameter of interest 𝛽1. This requires the classical IV conditions of instrument
relevance 𝐻𝐼𝑉1 : |𝛼2 | >> 0 and instrument exogeneity 𝐻𝐼𝑉2 : C(𝑉 , 𝜖) = E(𝑉𝜖) = 0. The first
assumption is theoretically motivated by the strategic behavior of wine growers presented above,
and is empirically assessed by the Fisher statistics on the significance of 𝑉 in the reduced form
of equation (B.2). The second assumption 𝐻𝐼𝑉2 is justified by the historical pre-determination of
AOC delineations that pre-exist FD presence and hence are not influenced by the current risk of FD
infection. This assumption also prohibits any correlation between vineyard prices and unobserved
determinants of FD presence, which is achieved by adding control variables in the empirical
models. Under 𝐻𝐼𝑉 = 𝐻𝐼𝑉1 ∩ 𝐻𝐼𝑉2, vineyard prices are correlated to FD presence only through
their influence on compliance rates, and the IV estimator of 𝛽1 is asymptotically consistent:

�̂�𝐼𝑉1 =
C(𝐼∗ ,𝑉)
C(𝐶∗ ,𝑉)

𝑝→
𝐻𝐼𝑉

𝛽1. (B.3)

Measurement errors. This IV-based identification strategy is challenged by the imperfect mea-
surement of compliance rates estimated from insecticide sales that are aggregated across crops
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and targeted pests. For each list of products presented in Section A.2 above, we observe 𝐶 = 𝐶∗+𝜇
instead of 𝐶∗, where 𝜇 denotes the measurement error due to the alternative uses (alternative crops
or alternative targets) of the insecticides approved against the FD vector. Replacing 𝐶∗ by 𝐶 in
the IV estimator of equation (B.3) provides a consistent estimator of 𝛽1 only if vineyard prices are
uncorrelated with the measurement errors, that is, C(𝑉 , 𝜇) = 0. This is unlikely to be true as we
expect locations with a smaller share of vines to exhibit both a lower vineyard price 𝑉 (because
prices drive specialization) and a higher measurement error 𝜇 (because of higher share of alterna-
tive land uses). To circumvent this problem, we model the measurement error by 𝜇 = 𝛾0+X⊤γ+𝜉,
where X is the vector of acreages of the alternative agricultural land uses divided by the acreage
to treat, and 𝜉 is the residual measurement error assumed to be uncorrelated with vineyard price,
𝐻𝑀𝐸 : C(𝑉 , 𝜉) = 0. This specification amounts to considering a constant application rate for
each land use and each target, as it is typically required from technical information of pesticide
products.3 The residual measurement error 𝜉 comes from the storage of insecticides, the random
variations of weather, or any other short-run determinant of insecticide application (for which we
conduct a robustness check by analyzing two consecutive years, i.e., 2016 and 2017). Our measure
𝐶 of the compliance rates can then be written as:

𝐶 = 𝜆0 + 𝜆1𝑉 +X⊤γ + 𝜁 (B.4)

with 𝜆0 = 𝛾0 + 𝛼0+𝛼1𝛽0
1−𝛼1𝛽1

, 𝜆1 = 𝛼2
1−𝛼1𝛽1

, and 𝜁 = 𝜉 + 𝛼1𝜖+𝜂
1−𝛼1𝛽1

. Under 𝐻2𝑆𝐿𝑆 = 𝐻𝐼𝑉 ∩ 𝐻𝑀𝐸, we have
C(𝑉 , 𝜁) = 0 so that the price 𝑉 is exogenous in equation (B.4) and the coefficient 𝜆1 can be
consistently estimated by OLS. Note that the measurement error on the compliance rate 𝐶 = 𝐴/𝑆
mostly stems from our proxy on the acreage potentially treated 𝐴, as we precisely measure the
area to treat 𝑆. This generates a skewness in the distribution of 𝜁.4 We expect 𝐻𝑉 : V(𝜁) = 𝜎2/𝑆2

and account for this heteroskedasticity by multiplying equation (B.4) by 𝑆 before the estimation.
This yields equation (1) in the Materials and Methods, where 𝐴 is explained by 𝑆, 𝑉 × 𝑆, and
Q = X × 𝑆. Under 𝐻𝑉 , our OLS estimation of this equation reported in Table 1 of the main
text (using different lists of insecticide products) is the efficient generalized least squares (GLS)
estimator of equation (B.4). Another appealing property from this specification of measurement
errors comes from the possibility to set X = 0 to predict compliance rates in the second stage.
This amounts to projecting out the measurement errors associated with alternative land uses. It
follows that a simple regression of 𝐼∗ on the predicted compliance rates from equation (B.4) with
X = 0 yields an asymptotically consistent estimator under 𝐻2𝑆𝐿𝑆:

�̂�2𝑆𝐿𝑆
1 =

C(𝐼∗ , �̂�1𝑉)
V(�̂�1𝑉) =

C(𝐼∗ ,𝑉)
�̂�1V(𝑉)

𝑝→
𝐻2𝑆𝐿𝑆

𝛽1. (B.5)

Figure 3 in the main text reports estimates of �̂�2𝑆𝐿𝑆
1 for various lists of approved products. The

confidence intervals (CIs) are obtained using Conley-type Heteroskedastic and Autocorrelation
Consistent (HAC) variance matrices which account for spatial dependence of the residuals across
neighboring locations (see Section C). Bootstrap methods accounting for the fact that we cannot
recover the structural errors 𝜖 yield similar CIs.

3Without loss of generality, consider a unique insecticide product and 2 alternative land uses. Under constant
application rates, the volume of sales (in physical units) is 𝑇 = (𝜏𝐶∗ + 𝜏0)𝑆 + 𝜏1𝑄1 + 𝜏2𝑄2 where 𝜏 is the recommended
dosage against the FD, 𝜏0 is the dosage for other insects on the vineyards area 𝑆, and 𝜏1 and 𝜏2 are the respective dosages
from the land uses 1 and 2. Our estimation of compliance rate is 𝐶 = 𝑇/(𝜏𝑆) = 𝐶∗ + 𝜏0/𝜏 + (𝜏1/𝜏)𝑋1 + (𝜏2/𝜏)𝑋2, which
corresponds to our specification because 𝑋𝑘 ≡ 𝑄𝑘/𝑆.

4This is because the measurement error on 𝐴 from alternative land uses and from idiosyncratic unobserved shocks
are both divided by 𝑆.
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C Robustness checks

We perform an extensive sensitivity analysis to assess the dependence of our causal evidence to
the presence of unobserved confounders, spatial autocorrelation, and imperfect monitoring. Our
main result, i.e. the large causal effect of noncompliance on FD presence, is preserved among the
full range of extended models presented in this Section. This is illustrated by the specification
chart in Figure C.1.

C.1 Accounting for potential confounders

As presented in Section B of SI, the validity of the instrument relies on 𝐻𝐼𝑉1 : |𝛼2 | >> 0, which
is directly testable from the first stage of the 2SLS estimation. Figure C.2 displays the marginal
effect of vineyard price on compliance rates with a partial residual plot. It illustrates the highly
significant linear relationship between the instrument and the endogenous explanatory variable.
The IV identification also relies on 𝐻𝐼𝑉2 : E(𝑉𝜖) = 0, the absence of correlation between vineyard
prices and the unobserved determinants of FD presence. This assumption cannot be directly tested
(as 𝜖 is not observable) but we introduce three sets of control variables that could determine FD
presence and be incidentally correlated with vineyard price. These variables are related to (i)
landscape and agricultural structures, (ii) average climate, and (iii) grape varieties. Tables C.1, C.2,
C.3 show that including these additional control variables does not qualitatively affect our results.
Table C.1 first reports the 2SLS estimates with the control variables (i). Elevation, semi-natural
area, and number of wine farms impact negatively compliance, while the impact of farms’ size is
positive. For the probability of FD presence, elevation and semi-natural area have negative effects,
the Shannon diversity index, the number of wine farms and their size have positive effects.
Table C.2 then provides the 2SLS estimates with the control variables (ii) with second-order poly-
nomials of centered values to account for non linearities of average temperature and cumulative
precipitations. In both stages, compliance and FD presence are negatively impacted by temperature
and precipitations and the terms of second-order are all significant at 95%.
Table C.3 finally gives the 2SLS estimates with the control variables (iii). Almost all Grape varieties
determine of both compliance and FD presence, and their effects are consistent with laboratory
results (Eveillard et al., 2016). Red varieties such as Pinot N., Gamay, Merlot, Grenache are less
threatened by FD, contrary to vulnerable varieties such as Cabernet franc and Chardonnay.
Vineyard price remains a strong instrument for compliance in all specifications. We cannot include
all these control variables simultaneously because it would induce a loss of degree of freedom,
which decreases the strength of our instrument (producing bias) and increases the standard errors
of the coefficients (decreasing precision).
Lastly, we propose to control for the spatial lags of the instrument. This allows to take into ac-
count potential spatial confounders without observing them (local growing practices, professional
advising structures, or other contextual effects for instance). Table C.4 and C.5 give the 2SLS
estimates with spatially-lagged vineyard prices respectively computed from 10 km buffers and
5th order contiguity (we have testes other spatial schedules that we do not report here). In most
specifications, the spatial lag of the spatial lag is significant in the first stage about compliance rates
but not significant in the second stages about FD presence. The causal effects are still robust to
these controls, which supports the assumption of a null correlation between vineyard prices and
the unobserved determinants of FD presence.
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C.2 Accounting for spatial autocorrelation of FD presence

Even without unobserved confounders, the spreading patterns of FD can produce a spatial auto-
correlation of FD presence that could bias our IV results (Ay and Gozlan, 2020). FD presence at the
postal code level is unlikely to present a contemporary spatial autocorrelation because of the small
annual dispersing ability of the vector (at most 500 meters by year, see Tramontini et al., 2020).
But, in the long run, neighboring postal codes might have similar probabilities of FD presence and
similar vineyard prices (regardless of their levels of compliance). We account for this possibility by
estimating spatial econometric models, which include the spatially lagged value of FD presence
as an additional control variable. Because of error propagation, the standard IV and 2SLS estima-
tion procedures are no longer convergent for such specifications. Hence, we use the generalized
method of moment estimator of Kelejian and Prucha (1998, 2010). For a given normalized spatial
weight matrix W , FD presence is assumed to be generated according to:

𝐼 = 𝜙0 + 𝜌W 𝐼 + 𝜙1𝐶 +X⊤γ + 𝜀 (C.1)

with |𝜌| < 1. We restrict this model to be complete in the sense that (ι − 𝑎W ) is non-singular
for all |𝑎 | < 1 (ι is the identity matrix of dimension equal to the sample size). Such spatially-
explicit modeling can only be conducted in cross-section, thus we restrict the data the the year
2016 (𝑁 = 738) while similar results are obtained for 2017. This specification considers W 𝐼 as
an additional endogenous variable that also requires to be instrumented. The Section 6.7 (p.155)
of Kelejian and Piras (2017) presents a method to estimate equation (C.1) using spatially lagged
values of exogenous regressors as instruments. Importantly, 𝜙1 no longer represents the total
causal effect of compliance on FD presence (LeSage and Pace, 2009). This coefficient only captures
the direct effect of compliance in a given postal code on its own probability of FD presence. The
total causal effect also includes the indirect effects of compliance mediated by the FD presence on
neighboring postal codes through 𝜌W 𝐼 in equation (C.1).
We use the spreg and impacts functions from the R package sphet to estimate the coefficients
reported in Table C.6, with the two spatial weight matrix W used in the previous subsection (i.e.,
10 km buffers and 5th order contiguity). As expected, it shows that FD presence is highly and
positively autocorrelated between postal codes with autoregressive terms distributed from .6 to
.8 accross specifications. The indirect effects of compliance are almost as important as the direct
effects, and total effects reported at the bottom of the tables are very close to the values in the main
text.

C.3 Accounting for imperfect monitoring

Finally, we address the possibility of incomplete monitoring of the FD, i.e. that some FD clusters
are unobserved in the data. Note first that our variable indicating the FD presence comes from
several years of mandatory monitoring (4 years in 2016 data, 5 years in 2017) where FD clusters are
specifically sought after. It does not seems impossible that 100% of all FD clusters are monitored
at the time of our data, given that 40% of postal codes under MCPs are monitored both in 2016
and in 2017. For that reason, we deem unlikely that a significant share of infected postal codes is
unobserved. Under perfect monitoring, 𝐼∗ is directly observed in the data and our 2SLS estimator
converges to the true causal effect.
Consider, on the contrary, that we only observe 𝐼 = 𝑀 × 𝐼∗ where 𝑀 ∈ {0, 1} represents the
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monitoring efforts. This allows for the possibility that we do not observe all cases, that is, E(𝐼) ≤
E(𝐼∗). Note from Table A.1 that E(𝐼) = 85% so that 0.85 < E(𝐼∗) < 1. This leaves little room for
the error in monitoring, and suggests that the potential bias in the 2SLS estimation is small. The
size of the total bias would depend both on monitoring errors and on the correlation between
the monitoring variable and the instrument, that is, the value of the vineyards. Replacing the
unobserved 𝐼∗ by the observed 𝐼 in equation (B.5) and using the exact covariance formula for a
product of random variables from Bohrnstedt and Goldberger (1969), the 2SLS estimator becomes:

�̃�2𝑆𝐿𝑆
1 =

C(𝐼 , �̂�1𝑉)
V(�̂�1𝑉) ≈ E(𝑀)�̂�2𝑆𝐿𝑆

1 + E(𝐼∗)C(𝑀 ,𝑉)
�̂�1V(𝑉) . (C.2)

This formula is an approximation neglecting third order terms, but is exact for normally distributed
random variables. By definition, 0 ⩽ E(𝑀) and E(𝐼∗) ⩽ 1, so that the only sign uncertainty pertains
to C(𝑀 ,𝑉). If monitoring efforts are uncorrelated with vineyard prices so that C(𝑀 ,𝑉) = 0, it
follows that �̃�2𝑆𝐿𝑆

1 > �̂�2𝑆𝐿𝑆
1 since E(𝑀) ⩽ 1. In that case, our 2SLS estimator converges to a lower

bound of the true causal effect in magnitude. Otherwise, the sign of the bias depends on the size
of the second term. Our data set contains partial monitoring data which allows to evaluate this
ratio. Table C.7 reports the OLS coefficient from a regression of monitoring efforts on predicted
compliance, in order to recover C(𝑀 ,𝑉)/�̂�1V(𝑉) of equation (C.2).5 The coefficients are negative
and significant for all the six main lists, and our preferred parameters 𝑁 = 15 and 𝜏 = 1 yield an
estimate of -0.18. Combining the plausible values E(𝑀) = 0.9 and E(𝐼∗) = 0.85 with our preferred
estimate �̃�1 = −0.45 yields �̂�1 = −0.33, which lies within the confidence intervals we consider in
the manuscript.

5The data set includes the share of surveyed acreage for all regions but Aquitaine, which we use as 𝑀. Because a
regression excluding the large Bordeaux vineyards would not provide representative results, we consider a proxy for
this region where monitoring is equal to one in case of FD presence and zero otherwise. This imputation yields a proxy
of 𝑀 biased towards 𝐼, suggesting a downward bias in the regression of 𝑀 on �̂�1𝑉 so that we estimate a lower bound
of the true causal effect in magnitude.
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D Dynamic benefit-cost analysis

We assess the robustness of our estimates of the infection costs with a dynamically explicit model
(Pavan et al., 2012). We relax two simplifying assumptions made in the main text, namely neglect-
ing (i) the spreading dynamics within postal codes and (ii) the costs of uprooting and replanting
infected plants (which add to the production losses). To evaluate whether these simplifications
could lead to overestimating the costs of noncompliance, we propose a stylized model of the prop-
agation dynamics inside postal codes. In this extended calculation, we account for the imperfect
monitoring and calibrate the replanting costs and the other parameters using reports from pro-
fessional organizations. We consider that newly infected postal code starts with a plausibly small
share of infected crops. Let 𝑤 be the share of infected crops within a postal code during the year it
is first reported as infected. Each year, the monitoring efforts allow to find a share 𝑀 of all infected
crops. These crops are replaced by an equal number of new healthy crops. These healthy crops
do not produce grapes for 𝑘 years. The remaining infected crops then spread by the reproduction
factor 𝐹. Let 𝑠𝑛 and 𝑢𝑛 be respectively the share of infected crops and the share of crops replanted
in year 𝑛:

(
𝑠𝑛 = 𝐹(1 − 𝑀)𝑠𝑛−1 = [𝐹(1 − 𝑀)]𝑛𝑤
𝑢𝑛 = 𝑀𝑠𝑛 = 𝑀[𝐹(1 − 𝑀)]𝑛𝑤 (D.1)

As long as 𝐹(1 − 𝑀) > 1, the presence of FD is increasing. The infected share increases until 𝑢𝑛
reaches 100%, at which point all vineyards are replanted with healthy crops and then infection
stops. This happens after a number of year equal to 𝑇 = ⌈− log(𝑤𝑀)

log(𝐹(1−𝑀))⌉. As in the benchmark
evaluation of the main text, we compute the benefits of increasing compliance by 10 percentage
points, using our preferred estimate of the causal effect of 𝛽1 = −.45, a total MCP area of𝐴 = 550, 000
ha, an average annual return 𝑅 = e1,600/ha, and a discount factor 𝑟 = .05. The total cost of FD
presence can be divided into three components. First, all vines are replaced after 𝑇 years, which
triggers a full production loss during the next 𝑘 years. The resulting forgone returns correspond
to the benchmark cost delayed by 𝑇 years, hence discounted by a factor 1/(1 + 𝑟)𝑇 . The second
component is the discounted sum of the production losses between the start of the infection
and year 𝑇. These losses are due to intermediary replanting of detected infected crops and the
corresponding years of production loss. The last component is the discounted sum of uprooting
and replanting costs, which amount to 𝐴

Í𝑇
𝑖=0

1
(1+𝑟)𝑖 𝑢𝑛𝑈 , where 𝑈 is the unitary cost per ha.

We calibrate this model using a range of plausible values found in reports from professional
organizations. In Southern France, infections costs were estimated at the parcel level (Richarme
et al., 2020), ignoring imperfect FD monitoring. They report that each infected plant contaminate
up to 10 healthy crops in one year. In their simulation, the initial share of infected plant 𝑤 is 1%
and they consider a reproduction factor 𝐹 of 5 for the first year, and then 2 for the following years.
Because clusters may saturate after a rapid expansion, we expect the dynamics at the larger postal
code scale to be slower. We thus consider a rather conservative range of values 𝑤 ∈ {1%, 0.1%} and
𝐹 ∈ {2, 3}. We also consider an extremely conservative value of 𝐹 = 1.7 implying that 3 infected
crops generate only 2 additional infected crops each year.
At the aggregate postal code level, yearly monitoring of the infected crops is likely imperfect.6

6The symptoms only appear with a delay, so that not all infected crops can be detected immediately. However, this
does not stand in contradiction with our view exposed in Section C.3 that most postal codes containing at least one
cluster are observed in the data. Inside an infected postal code however, not all infected plants are detected each year.
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In their 2020 report, the regional organization in charge of the monitoring and reporting around
Bordeaux reported having prospected 30,117 ha over the total of 216,000 ha in vines, which implies
a prospecting share of 13.9%.7 In Occitanie, a 2020 report mentions that 20% of the vineyards have
been surveyed that year.8 In PACA, the local authorities reported in 2020 that about 10% of all
vines had been inspected in the last 3 years.9 As the share of prospected area is likely greater in
infected postal codes than at the regional level, we consider 𝑀 ∈ {20%, 25%, 33%}.
Professional organizations routinely report estimates of installation costs including uprooting and
replanting costs.10 These evaluate uprooting costs at around e1,000/ha, and maintenance costs
during the first years at around e10,000/ha. Note that our calculation of the annual returns
already includes maintenance costs and regular replanting every 20-50 years. This suggests that
the accounting costs in the reports overestimate 𝑈 . We consider smaller values 𝑈 ∈ {1, 2, 5} in ke.
Fig. D.1 reports the total cost for each set of parameters, and the corresponding values for each
of the three components. The number of years until full replanting ranges from 8 years (𝐹 = 3
and 𝑤 = 1%) to 62 years (𝐹 = 1.7, 𝑤 = 0.1%, and 𝑀 = 33%). Only for extremely conservative
parameters does the dynamic model yield values under the benchmark calculation in the main text,
and even these are still above the corresponding compliance costs. Over more plausible ranges of
parameters, the extended cost estimates are larger than the benchmark calculation which suggests
that the main text provides a lower bound of the cost of noncompliance.

7GDON Bordeaux (2020)
8Direction Régionale de l’Alimentation de l’Agriculture et de la Forêt Occitanie (2019)
9Chambre d’Agriculture Provence-Alpes-Côte d’Azur (2020)

10Chambres d’Agriculture Var Bouches-Du-Rhône (2015); Chambre d’Agriculture d’Aquitaine (2017)
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Figures and Tables

Table A.1: Summary statistics of the main variables at the postal code level

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
FD presence 1,586 0.846 0.362 0 1 1 1
FD monitoring 1,586 0.393 0.489 0 0 1 1
Log. 2015 vineyard price 1,586 2.656 0.678 1.609 2.303 2.890 6.795
Log. 1990 vineyard price 1,586 2.433 0.705 0.000 2.121 2.913 5.902
Compliance (𝑁 = 10, 𝜏 = 1) 1,586 16.740 290.200 0.000 0.392 3.105 11,270.000
Compliance (𝑁 = 10, 𝜏 = 5) 1,586 38.090 373.000 0.000 0.526 8.500 11,589.000
Compliance (𝑁 = 10, 𝜏 = 100) 1,586 52.910 543.600 0.000 0.556 9.882 13,244.000
Compliance (𝑁 = 15, 𝜏 = 1) 1,586 22.800 305.100 0.000 0.502 5.029 11,453.000
Compliance (𝑁 = 15, 𝜏 = 5) 1,586 47.510 431.300 0.000 0.641 12.530 13,775.000
Compliance (𝑁 = 15, 𝜏 = 100) 1,586 68.030 726.700 0.000 0.705 13.870 21,058.000
Mean vineyard plot size 1,585 267.500 1,561.000 0.000 0.000 101.500 24,622.000
Percent of semi-natural area 1,585 0.291 0.243 0.000 0.092 0.453 0.986
Landscape shape index 1,585 59.690 14.520 17.890 50.550 69.120 121.000
Shannon diversity index 1,585 2.735 1.056 0.000 2.061 3.533 4.886
Number of wine farms 1,578 129.000 199.800 0.000 0.000 174.000 974.000
Acreage of wine farms 1,578 783.300 1,305.000 0.000 0.000 924.000 7,345.000
Number of wine workers 1,578 232.200 375.500 0.000 0.000 301.500 1,875.000
Gross margin of wine farms 1,578 2,010.000 3,260.000 0.000 0.000 2,464.000 17,617.000
Average temperature 1,586 13.380 1.436 5.207 12.700 14.270 16.120
Cumulative precipitations 1,586 61.360 11.670 38.950 54.090 65.130 112.500
Number of rainy days 1,586 13.040 2.509 7.889 10.960 14.640 20.680
Solar radiation 1,586 83,660.000 2,722.000 73,293.000 81,680.000 86,025.000 90,066.000
Average wind intensity 1,586 2.806 0.817 0.948 2.178 3.356 6.096
Relative humidity 1,586 73.100 4.556 64.560 67.590 76.780 80.630
Number of freezing cold days 1,586 2.819 1.234 0.028 2.164 3.333 10.840
Evapotranspiration 1,586 83.940 12.400 53.100 74.970 93.970 132.100
% of AOCs with Pinot N 1,586 0.007 0.069 0 0 0 1
% of AOCs with Cab. franc 1,586 0.210 0.328 0 0 0.1 1
% of AOCs with Cab. sauv. 1,586 0.195 0.333 0 0 0.03 1
% of AOCs with Chardonnay 1,586 0.021 0.058 0 0 0.03 1
% of AOCs with Gamay 1,586 0.003 0.013 0 0 0 0
% of AOCs with Merlot 1,586 0.240 0.340 0 0 0.1 1
% of AOCs with Sauvignon 1,586 0.259 0.403 0 0 0.8 1
% of AOCs with Grenache 1,586 0.459 0.362 0 0 0.6 1
% of AOCs with Syrah 1,586 0.449 0.361 0 0 0.7 1
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Figure A.1: Correlation plots between the additional control variables.
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Figure A.2: Regional analysis for the restricted lists of insecticide products.
Notes: The four panels represent the main wine-producing regions of France. The bars show the share of Usable
Agricultural Area (UAA, without grasslands) that could be treated with the observed sales of each insecticide product.
We distinguish the specialized postal codes and the postal codes without vineyards, to show that products with other
uses can be dropped depending on 𝜏. The dotted lines represent the cumulative shares of the most used products over
specialized postal codes. The vast majority (>80%) of treatments are applied using the 10 to 15 most used products,
depending on the region.
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Figure C.1: Specification chart across extended models.
Notes: This plot summarizes the causal effects from the sensitivity analysis. Section C provides the details of each
specification presented in the bottom panel of the Figure. The standard errors in parenthesis are HAC from the
procedure presented in Kelejian and Piras (2017).
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Figure C.2: Partial residual plot for the instrument in the first stage.
Notes: This partial residual plot comes from the regression of compliance rates (with 𝑁 = 15 and 𝜏 = 5) on vineyard
prices and controls for alternative land uses (rows 5–10 of Table 1 in the main text). The slope of the line is the coefficient
𝜆1 related to the interaction between acreages to treat and the logarithm of vineyard price deviation in equation B.4 of
SI. The averages are weighted by the surface to treat. The points are located in 100 regular bins spanning the interval
[-2;4] on the x-axis, with 53 bins containing between 1 and 144 observations. The y-value is above 1.5 for 6 observations
and below 0 for 5 observations, so do not appear in the Figure. These points only account for 0.79% of the acreage to
treat.
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Table C.1: 2SLS results controlling for landscape and agricultural structures

(a) First stage (outcome= acreage actually treated)

(1) (2) (3) (4) (5) (6)
Acreage to treat (ATT) 0.535∗∗∗ 0.662∗∗∗ 0.652∗∗∗ 0.694∗∗∗ 0.777∗∗∗ 0.751∗∗∗

(0.040) (0.048) (0.049) (0.047) (0.054) (0.054)
Permanent crops 1.128∗∗∗ 1.518∗∗∗ 2.454∗∗∗ 1.501∗∗∗ 2.019∗∗∗ 2.913∗∗∗

(0.075) (0.089) (0.091) (0.087) (0.101) (0.101)
Annual crops 0.064∗∗∗ 0.130∗∗∗ 0.108∗∗∗ 0.094∗∗∗ 0.187∗∗∗ 0.165∗∗∗

(0.008) (0.009) (0.010) (0.009) (0.011) (0.011)
Pastures −0.017∗ −0.022∗ −0.007 −0.027∗∗ −0.033∗∗ −0.017

(0.010) (0.012) (0.012) (0.012) (0.013) (0.013)
ATT × log. price deviation 0.101∗∗∗ 0.048∗∗∗ 0.085∗∗∗ 0.103∗∗∗ 0.099∗∗∗ 0.138∗∗∗

(0.012) (0.014) (0.014) (0.013) (0.016) (0.016)
ATT × Elevation −0.001∗∗∗ −0.001∗∗∗ −0.0004∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
ATT × Mean vineyard plot size 0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
ATT × Percent of semi-natural area −0.173∗∗∗ −0.192∗∗∗ −0.240∗∗∗ −0.184∗∗∗ −0.244∗∗∗ −0.296∗∗∗

(0.038) (0.046) (0.047) (0.045) (0.052) (0.052)
ATT × Landscape shape index −0.001 −0.001 −0.0004 −0.002∗∗ −0.002∗∗ −0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ATT × Shannon diversity index 0.063∗∗∗ 0.059∗∗∗ 0.038∗∗∗ 0.088∗∗∗ 0.091∗∗∗ 0.070∗∗∗

(0.012) (0.014) (0.014) (0.014) (0.016) (0.016)
ATT × Number of wine farms −0.0004∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0005∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
ATT × Acreage of wine farms 0.0002∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.00003) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004)
Observations 1,577 1,577 1,577 1,577 1,577 1,577
R2 0.866 0.836 0.844 0.870 0.865 0.874

(b) Second stage (outcome= dummy about FD presence)

(1) (2) (3) (4) (5) (6)
Predicted Compliance (𝑁 = 10, 𝜏 = 1) −0.736∗∗∗

(0.128)
Predicted Compliance (𝑁 = 10, 𝜏 = 5) −0.697∗∗∗

(0.199)
Predicted Compliance (𝑁 = 10, 𝜏 = 100) −0.709∗∗∗

(0.140)
Predicted Compliance (𝑁 = 15, 𝜏 = 1) −0.680∗∗∗

(0.122)
Predicted Compliance (𝑁 = 15, 𝜏 = 5) −0.608∗∗∗

(0.120)
Predicted Compliance (𝑁 = 15, 𝜏 = 100) −0.521∗∗∗

(0.092)
Elevation −0.0004∗∗∗ −0.001∗∗∗ −0.0003∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0003∗∗∗

(0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)
Mean vineyard plot size 0.00001∗∗ 0.00001∗ 0.00001∗ 0.00001∗∗ 0.00001∗ 0.00001∗

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)
Percent of semi-natural area −0.155∗∗∗ −0.177∗∗∗ −0.202∗∗∗ −0.154∗∗∗ −0.181∗∗∗ −0.182∗∗∗

(0.047) (0.055) (0.052) (0.047) (0.050) (0.049)
Landscape shape index −0.0001 −0.001 0.0001 −0.001 −0.001 −0.0001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Shannon diversity index 0.094∗∗∗ 0.091∗∗∗ 0.075∗∗∗ 0.107∗∗∗ 0.103∗∗∗ 0.084∗∗∗

(0.013) (0.016) (0.012) (0.015) (0.015) (0.012)
Number of wine farms 0.0002∗∗∗ 0.0001 0.0001∗ 0.0001∗∗∗ 0.0001∗∗ 0.0001∗∗∗

(0.00005) (0.0001) (0.0001) (0.00005) (0.00005) (0.00005)
Acreage of wine farms 1.039∗∗∗ 1.120∗∗∗ 1.112∗∗∗ 1.118∗∗∗ 1.123∗∗∗ 1.037∗∗∗

(0.077) (0.136) (0.098) (0.091) (0.100) (0.078)
Observations 1,577 1,577 1,577 1,577 1,577 1,577
R2 0.054 0.042 0.050 0.053 0.050 0.054
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Table C.2: 2SLS results controlling for historical climate variables

(a) First stage (outcome= acreage actually treated)

(1) (2) (3) (4) (5) (6)
Acreage to treat (ATT) 0.544∗∗∗ 0.517∗∗∗ 0.516∗∗∗ 0.645∗∗∗ 0.680∗∗∗ 0.695∗∗∗

(0.013) (0.016) (0.016) (0.015) (0.018) (0.018)
Permanent crops 1.153∗∗∗ 1.579∗∗∗ 2.553∗∗∗ 1.526∗∗∗ 2.061∗∗∗ 2.990∗∗∗

(0.076) (0.092) (0.093) (0.090) (0.105) (0.104)
Annual crops 0.062∗∗∗ 0.127∗∗∗ 0.106∗∗∗ 0.092∗∗∗ 0.183∗∗∗ 0.163∗∗∗

(0.008) (0.010) (0.010) (0.010) (0.011) (0.011)
Pastures −0.019∗ −0.023∗ −0.007 −0.030∗∗ −0.036∗∗ −0.019

(0.010) (0.012) (0.013) (0.012) (0.014) (0.014)
ATT × log. price deviation 0.105∗∗∗ 0.071∗∗∗ 0.119∗∗∗ 0.112∗∗∗ 0.115∗∗∗ 0.163∗∗∗

(0.013) (0.016) (0.016) (0.015) (0.018) (0.017)
ATT × Average temperature −0.081 2.230∗ 4.276∗∗∗ −1.104 −1.017 −0.048

(0.993) (1.201) (1.209) (1.174) (1.364) (1.355)
ATT × Squared Average temperature −4.560∗∗∗ −7.116∗∗∗ −8.218∗∗∗ −4.141∗∗∗ −5.162∗∗∗ −4.965∗∗∗

(1.091) (1.320) (1.329) (1.291) (1.500) (1.489)
ATT × Cumulative precipitations −3.968∗∗∗ −4.184∗∗∗ −3.365∗∗∗ −5.025∗∗∗ −5.774∗∗∗ −4.690∗∗∗

(0.659) (0.797) (0.803) (0.780) (0.906) (0.900)
ATT × Squared Cumulative precipitations −1.537∗∗∗ −1.697∗∗ −1.464∗∗ −1.946∗∗∗ −2.259∗∗∗ −2.004∗∗

(0.595) (0.719) (0.724) (0.703) (0.817) (0.812)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.855 0.819 0.833 0.857 0.849 0.862

(b) Second stage (outcome= dummy about FD presence)

(1) (2) (3) (4) (5) (6)
Predicted Compliance (𝑁 = 10, 𝜏 = 1) −0.693∗∗∗

(0.134)
Predicted Compliance (𝑁 = 10, 𝜏 = 5) −1.021∗∗∗

(0.197)
Predicted Compliance (𝑁 = 10, 𝜏 = 100) −0.611∗∗∗

(0.118)
Predicted Compliance (𝑁 = 15, 𝜏 = 1) −0.649∗∗∗

(0.125)
Predicted Compliance (𝑁 = 15, 𝜏 = 5) −0.631∗∗∗

(0.122)
Predicted Compliance (𝑁 = 15, 𝜏 = 100) −0.445∗∗∗

(0.086)
Average temperature 0.193 2.527∗∗∗ 2.863∗∗∗ −0.467 −0.393 0.228

(0.395) (0.609) (0.659) (0.411) (0.407) (0.395)
Squared Average temperature −3.562∗∗∗ −7.668∗∗∗ −5.423∗∗∗ −3.090∗∗∗ −3.660∗∗∗ −2.609∗∗∗

(0.689) (1.426) (1.012) (0.613) (0.705) (0.541)
Cumulative precipitations −2.654∗∗∗ −4.176∗∗∗ −1.959∗∗∗ −3.166∗∗∗ −3.549∗∗∗ −1.988∗∗∗

(0.576) (0.816) (0.487) (0.652) (0.712) (0.491)
Squared Cumulative precipitations −0.373 −1.041∗ −0.203 −0.571 −0.734 −0.199

(0.455) (0.543) (0.436) (0.479) (0.500) (0.435)
Constant 1.192∗∗∗ 1.343∗∗∗ 1.130∗∗∗ 1.234∗∗∗ 1.244∗∗∗ 1.124∗∗∗

(0.068) (0.096) (0.056) (0.076) (0.078) (0.055)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.024 0.024 0.024 0.024 0.024 0.024
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Table C.3: 2SLS results controlling for grape varieties allowed by AOCs

(a) First stage (outcome= acreage actually treated)

(1) (2) (3) (4) (5) (6)
Acreage to treat (ATT) 0.639∗∗∗ 0.612∗∗∗ 0.747∗∗∗ 0.633∗∗∗ 0.702∗∗∗ 0.904∗∗∗

(0.046) (0.055) (0.056) (0.055) (0.063) (0.063)
Permanent crops 1.053∗∗∗ 1.482∗∗∗ 2.382∗∗∗ 1.465∗∗∗ 1.980∗∗∗ 2.817∗∗∗

(0.075) (0.089) (0.091) (0.090) (0.103) (0.103)
Annual crops 0.069∗∗∗ 0.131∗∗∗ 0.111∗∗∗ 0.094∗∗∗ 0.184∗∗∗ 0.164∗∗∗

(0.008) (0.009) (0.010) (0.010) (0.011) (0.011)
Pastures −0.030∗∗∗ −0.037∗∗∗ −0.020∗ −0.040∗∗∗ −0.050∗∗∗ −0.033∗∗

(0.010) (0.012) (0.012) (0.012) (0.014) (0.014)
ATT × log. price deviation 0.106∗∗∗ 0.068∗∗∗ 0.100∗∗∗ 0.093∗∗∗ 0.077∗∗∗ 0.103∗∗∗

(0.015) (0.018) (0.019) (0.018) (0.021) (0.021)
ATT × % of AOCs with Pinot N −1.439∗∗∗ −1.817∗∗∗ −2.037∗∗∗ −2.070∗∗∗ −2.082∗∗∗ −1.993∗∗∗

(0.385) (0.459) (0.469) (0.464) (0.531) (0.530)
ATT × % of AOCs with Cab. franc 0.488∗∗ 1.086∗∗∗ 1.080∗∗∗ 0.214 0.456∗ 0.397

(0.194) (0.231) (0.236) (0.234) (0.267) (0.267)
ATT × % of AOCs with Cab. sauv. 0.006 −0.412 −0.238 −0.109 −0.141 0.158

(0.231) (0.276) (0.282) (0.279) (0.319) (0.319)
ATT × % of AOCs with Chardonnay 2.923∗∗∗ 3.607∗∗∗ 2.374∗∗∗ 3.673∗∗∗ 4.444∗∗∗ 3.238∗∗∗

(0.500) (0.596) (0.609) (0.602) (0.689) (0.689)
ATT × % of AOCs with Gamay −11.550∗∗∗ −11.500∗∗∗ −4.711∗ −10.390∗∗∗ −10.900∗∗∗ −3.245

(2.170) (2.589) (2.645) (2.616) (2.993) (2.990)
ATT × % of AOCs with Merlot 0.111 0.172 −0.062 0.237∗∗ 0.178 −0.134

(0.091) (0.109) (0.111) (0.110) (0.126) (0.126)
ATT × % of AOCs with Sauvignon −0.436∗∗∗ −0.582∗∗∗ −0.670∗∗∗ −0.096 −0.197 −0.348∗∗∗

(0.090) (0.107) (0.109) (0.108) (0.124) (0.124)
ATT × % of AOCs with Grenache −0.523∗∗∗ −0.812∗∗∗ −0.773∗∗∗ −0.268∗ −0.503∗∗∗ −0.525∗∗∗

(0.122) (0.146) (0.149) (0.147) (0.169) (0.168)
ATT × % of AOCs with Syrah 0.383∗∗∗ 0.687∗∗∗ 0.531∗∗∗ 0.213∗ 0.387∗∗∗ 0.221

(0.103) (0.123) (0.126) (0.125) (0.143) (0.143)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.869 0.841 0.849 0.866 0.863 0.873

(b) Second stage (outcome= dummy about FD presence)

(1) (2) (3) (4) (5) (6)
Predicted Compliance (𝑁 = 10, 𝜏 = 1) −0.482∗∗∗

(0.132)
Predicted Compliance (𝑁 = 10, 𝜏 = 5) −0.753∗∗∗

(0.207)
Predicted Compliance (𝑁 = 10, 𝜏 = 100) −0.510∗∗∗

(0.140)
Predicted Compliance (𝑁 = 15, 𝜏 = 1) −0.551∗∗∗

(0.151)
Predicted Compliance (𝑁 = 15, 𝜏 = 5) −0.664∗∗∗

(0.182)
Predicted Compliance (𝑁 = 15, 𝜏 = 100) −0.497∗∗∗

(0.136)
% of AOCs with Pinot N −0.676∗∗ −1.351∗∗∗ −1.021∗∗∗ −1.124∗∗∗ −1.364∗∗∗ −0.972∗∗∗

(0.296) (0.434) (0.361) (0.383) (0.437) (0.351)
% of AOCs with Cab. franc 0.546∗∗∗ 1.128∗∗∗ 0.861∗∗∗ 0.429∗∗∗ 0.613∗∗∗ 0.508∗∗∗

(0.165) (0.274) (0.216) (0.154) (0.173) (0.161)
% of AOCs with Cab. sauv. −0.108 −0.421∗∗∗ −0.232 −0.171 −0.204 −0.032

(0.147) (0.162) (0.147) (0.146) (0.147) (0.151)
% of AOCs with Chardonnay 1.415∗∗∗ 2.721∗∗∗ 1.215∗∗∗ 2.031∗∗∗ 2.955∗∗∗ 1.613∗∗∗

(0.474) (0.792) (0.431) (0.618) (0.852) (0.519)
% of AOCs with Gamay −12.540∗∗∗ −15.630∗∗∗ −9.370∗∗∗ −12.700∗∗∗ −14.200∗∗∗ −8.580∗∗∗

(1.638) (2.405) (0.999) (1.676) (2.044) (0.902)
% of AOCs with Merlot 0.088 0.164∗∗ 0.003 0.165∗∗ 0.153∗∗ −0.032

(0.071) (0.078) (0.070) (0.078) (0.076) (0.072)
% of AOCs with Sauvignon −0.310∗∗ −0.537∗∗∗ −0.441∗∗∗ −0.152 −0.230∗∗ −0.272∗∗

(0.120) (0.167) (0.146) (0.100) (0.108) (0.114)
% of AOCs with Grenache −0.385∗∗∗ −0.745∗∗∗ −0.527∗∗∗ −0.281∗∗ −0.467∗∗∗ −0.394∗∗∗

(0.138) (0.217) (0.166) (0.121) (0.154) (0.140)
% of AOCs with Syrah 0.358∗∗∗ 0.691∗∗∗ 0.444∗∗∗ 0.291∗∗∗ 0.430∗∗∗ 0.283∗∗∗

(0.114) (0.184) (0.129) (0.104) (0.127) (0.103)
Constant 1.111∗∗∗ 1.264∗∗∗ 1.184∗∗∗ 1.152∗∗∗ 1.269∗∗∗ 1.252∗∗∗

(0.088) (0.127) (0.106) (0.098) (0.129) (0.124)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.091 0.091 0.091 0.091 0.091 0.091
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Table C.4: 2SLS results controlling for spatial lag of the instrument (10 km buffer)

(a) First stage (outcome= acreage actually treated)

(1) (2) (3) (4) (5) (6)
Acreage to treat (ATT) 0.133∗∗ 0.227∗∗∗ 0.493∗∗∗ 0.036 0.053 0.347∗∗∗

(0.056) (0.068) (0.069) (0.065) (0.076) (0.076)
Permanent crops 1.117∗∗∗ 1.514∗∗∗ 2.464∗∗∗ 1.503∗∗∗ 2.024∗∗∗ 2.941∗∗∗

(0.077) (0.093) (0.094) (0.090) (0.105) (0.105)
Annual crops 0.064∗∗∗ 0.131∗∗∗ 0.113∗∗∗ 0.092∗∗∗ 0.186∗∗∗ 0.167∗∗∗

(0.008) (0.010) (0.010) (0.010) (0.011) (0.011)
Pastures −0.017 −0.024∗ −0.012 −0.026∗∗ −0.033∗∗ −0.019

(0.010) (0.013) (0.013) (0.012) (0.014) (0.014)
ATT × log. price deviation 0.056∗∗∗ 0.044∗∗ 0.136∗∗∗ 0.025 0.034 0.134∗∗∗

(0.017) (0.021) (0.021) (0.020) (0.023) (0.023)
ATT × Lag of log. price deviation 0.178∗∗∗ 0.139∗∗∗ 0.039 0.256∗∗∗ 0.266∗∗∗ 0.156∗∗∗

(0.022) (0.027) (0.027) (0.026) (0.030) (0.030)
Weak instruments 10.83 4.41 41.99 1.56 2.13 32.98
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.851 0.812 0.825 0.856 0.846 0.857

(b) Second stage (outcome= dummy about FD presence)

(1) (2) (3) (4) (5) (6)
Predicted Compliance (𝑁 = 10, 𝜏 = 1) −0.520∗

(0.267)
Predicted Compliance (𝑁 = 10, 𝜏 = 5) −0.669∗

(0.344)
Predicted Compliance (𝑁 = 10, 𝜏 = 100) −0.215∗

(0.111)
Predicted Compliance (𝑁 = 15, 𝜏 = 1) −1.171∗

(0.602)
Predicted Compliance (𝑁 = 15, 𝜏 = 5) −0.857∗

(0.440)
Predicted Compliance (𝑁 = 15, 𝜏 = 100) −0.218∗

(0.112)
Lag of log. price deviation −0.050 −0.049 −0.134∗∗∗ 0.157 0.086 −0.109∗∗∗

(0.062) (0.062) (0.025) (0.166) (0.130) (0.034)
Constant 1.209∗∗∗ 1.292∗∗∗ 1.246∗∗∗ 1.182∗∗∗ 1.186∗∗∗ 1.216∗∗∗

(0.043) (0.064) (0.049) (0.043) (0.043) (0.043)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.046 0.046 0.046 0.046 0.046 0.046
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Table C.5: 2SLS results controlling for spatial lag of the instrument (5th order contiguity)

(a) First stage (outcome= acreage actually treated)

(1) (2) (3) (4) (5) (6)
Acreage to treat (ATT) 0.556∗∗∗ 0.544∗∗∗ 0.570∗∗∗ 0.654∗∗∗ 0.689∗∗∗ 0.715∗∗∗

(0.010) (0.013) (0.013) (0.012) (0.014) (0.014)
Permanent crops 1.066∗∗∗ 1.472∗∗∗ 2.451∗∗∗ 1.430∗∗∗ 1.947∗∗∗ 2.896∗∗∗

(0.078) (0.093) (0.094) (0.092) (0.107) (0.105)
Annual crops 0.075∗∗∗ 0.140∗∗∗ 0.116∗∗∗ 0.108∗∗∗ 0.202∗∗∗ 0.177∗∗∗

(0.008) (0.010) (0.010) (0.010) (0.011) (0.011)
Pastures −0.023∗∗ −0.029∗∗ −0.013 −0.035∗∗∗ −0.042∗∗∗ −0.024∗

(0.011) (0.013) (0.013) (0.013) (0.015) (0.014)
ATT × log. price deviation 0.158∗∗∗ 0.119∗∗∗ 0.153∗∗∗ 0.174∗∗∗ 0.187∗∗∗ 0.222∗∗∗

(0.011) (0.013) (0.013) (0.013) (0.015) (0.015)
ATT × Lag of log. price deviation 0.015∗∗∗ 0.021∗∗∗ 0.013∗∗ 0.017∗∗∗ 0.022∗∗∗ 0.015∗∗

(0.004) (0.005) (0.005) (0.005) (0.006) (0.006)
Weak instruments 205.37 80.63 133.85 178.7 152.69 223.38
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.846 0.810 0.826 0.848 0.839 0.855

(b) Second stage (outcome= dummy about FD presence)

(1) (2) (3) (4) (5) (6)
Predicted Compliance (𝑁 = 10, 𝜏 = 1) −0.412∗∗∗

(0.090)
Predicted Compliance (𝑁 = 10, 𝜏 = 5) −0.547∗∗∗

(0.120)
Predicted Compliance (𝑁 = 10, 𝜏 = 100) −0.423∗∗∗

(0.093)
Predicted Compliance (𝑁 = 15, 𝜏 = 1) −0.374∗∗∗

(0.082)
Predicted Compliance (𝑁 = 15, 𝜏 = 5) −0.348∗∗∗

(0.076)
Predicted Compliance (𝑁 = 15, 𝜏 = 100) −0.292∗∗∗

(0.064)
Lag of log. price deviation −0.012 −0.007 −0.013 −0.012 −0.011 −0.014∗

(0.008) (0.009) (0.008) (0.008) (0.008) (0.008)
Constant 1.080∗∗∗ 1.149∗∗∗ 1.092∗∗∗ 1.095∗∗∗ 1.090∗∗∗ 1.060∗∗∗

(0.042) (0.057) (0.045) (0.045) (0.044) (0.038)
Observations 1,586 1,586 1,586 1,586 1,586 1,586
R2 0.025 0.025 0.025 0.025 0.025 0.025
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Table C.6: GMM results controlling for spatial lag of the outcome

(a) Outcome equation with 10 km buffers

(1) (2) (3) (4) (5) (6)

Constant 0.36196∗ 0.27368 0.3993∗ 0.4066∗∗ 0.24671 0.3549∗
(0.19) (0.176) (0.233) (0.187) (0.161) (0.204)

Acreage of permanent crops 0.00101 0.00192∗∗∗ 0.0022∗∗ 0.00076 0.00209∗∗ 0.00234∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Acreage of annual crops -0.00021∗∗∗ -0.00019∗∗∗ -2e-04∗∗∗ -0.00021∗∗∗ -0.00019∗∗∗ -2e-04∗∗∗
(0) (0) (0) (0) (0) (0)

Acreage of pastures -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗
(0) (0) (0) (0) (0) (0)

Compliance (instrumented) -0.2104 -0.09261 -0.11982 -0.20208∗ -0.16099 -0.08313
(0.133) (0.084) (0.092) (0.105) (0.097) (0.062)

Autoregressive term 0.75565∗∗∗ 0.77767∗∗∗ 0.66778∗∗∗ 0.73052∗∗∗ 0.79382∗∗∗ 0.70322∗∗∗
(0.147) (0.146) (0.189) (0.146) (0.14) (0.17)

Observations 738 738 738 738 738 738
Direct impacts -0.21187 -0.09294 -0.12088 -0.20395 -0.16116 -0.08368
Indirect impacts -0.1179 -0.03456 -0.07859 -0.1366 -0.1198 -0.04518
Total impacts -0.32976 -0.1275 -0.19946 -0.34055 -0.28096 -0.12887

(b) Outcome equation with 5th order contiguity

(1) (2) (3) (4) (5) (6)

Constant 0.48524∗ 0.47469∗ 0.5828∗∗ 0.49657∗∗ 0.43716∗ 0.53845∗∗
(0.259) (0.278) (0.291) (0.242) (0.26) (0.27)

Acreage of permanent crops 0.00055 0.00206∗ 0.00227∗ 0.00015 0.00246∗ 0.00264∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Acreage of annual crops -0.00024∗∗∗ -0.00022∗∗∗ -0.00023∗∗∗ -0.00024∗∗∗ -0.00022∗∗∗ -0.00023∗∗∗
(0) (0) (0) (0) (0) (0)

Acreage of pastures -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗ -1e-05∗∗
(0) (0) (0) (0) (0) (0)

Compliance (instrumented) -0.31817∗∗ -0.20749∗ -0.22225∗∗ -0.28093∗∗∗ -0.15482∗ -0.1643∗∗
(0.142) (0.116) (0.102) (0.107) (0.082) (0.073)

Autoregressive term 0.69797∗∗∗ 0.65209∗∗∗ 0.55712∗∗ 0.7015∗∗∗ 0.68196∗∗∗ 0.5916∗∗∗
(0.203) (0.23) (0.244) (0.195) (0.219) (0.23)

Observations 738 738 738 738 738 738
Direct impacts -0.32681 -0.2128 -0.23255 -0.28907 -0.15801 -0.1703
Indirect impacts -0.29128 -0.18218 -0.30015 -0.26896 -0.11706 -0.18569
Total impacts -0.61809 -0.39498 -0.5327 -0.55803 -0.27506 -0.35599
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Table C.7: OLS regression of monitoring efforts on predicted compliance.
Notes: The reported coefficients are the OLS estimates from regressing the share of monitored vineyard acreages on the
predicted values of compliance rates at the postal code level. Monitoring data are not available for the Bordeaux region,
so we impute them by considering that monitoring is equal to one in case of FD presence and zero otherwise.

(1) (2) (3) (4) (5) (6)
Pred. Compliance (𝑁 = 10, 𝜏 = 1) −0.200∗∗∗

(0.064)
Pred. Compliance (𝑁 = 10, 𝜏 = 5) −0.256∗∗∗

(0.082)
Pred. Compliance (𝑁 = 10, 𝜏 = 100) −0.207∗∗∗

(0.066)
Pred. Compliance (𝑁 = 15, 𝜏 = 1) −0.182∗∗∗

(0.058)
Pred. Compliance (𝑁 = 15, 𝜏 = 5) −0.176∗∗∗

(0.056)
Pred. Compliance (𝑁 = 15, 𝜏 = 100) −0.151∗∗∗

(0.048)
Constant 1.011∗∗∗ 1.043∗∗∗ 1.017∗∗∗ 1.019∗∗∗ 1.021∗∗∗ 1.005∗∗∗

(0.034) (0.044) (0.036) (0.036) (0.037) (0.032)
Observations 1,586 1,586 1,586 1,586 1,586 1,586

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure D.1: The cost of noncompliance: benchmark vs. dynamic calculations.
Notes: The value of the benchmark reported in the main text is represented by the horizontal dotted black line. The
delayed benchmark loss corresponds to the discounted cost of replanting 100% of the vines after 𝑇 years. The income
loss during the spreading period refers to the discounted sum of production losses before year 𝑇. The replanting costs
account for the fixed cost of uprooting and replanting each infected crop, which is neglected in the benchmark analysis.
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