Pest dispersion as a spatial interaction: The case of Flavescence Dorée

Jean-Sauveur Ay INRA CESAER DIJON

Estelle Gozlan INRA ECOPUB PARIS

WCNRM MAY 2019

Outline

1 - Introduction
2 - Model
3 - Data
4 - Results
5 - Simulation
6 - Conclusion

Flavescence Dorée

- Bacterial disease of vines
- High quantitative loss
- No cure actually
- Mandatory vines removal, treatment against vector

Scaphoideus Titanus

Economic considerations

Two opposite externalities from treatments

- Reduced risk for neighboring vineyards:
Social benefit > Private benefit
- Environmental damage on ecosystems:
Social cost > Private cost
\Rightarrow Strong societal debate about compulsory treatment

Outline

1 - Introduction

2 - Model
3 - Data
4 - Results
5 - Simulation
6 - Conclusion

Linear probability model

The probability of infection for a given vineyard i

$$
p_{i}=b\left(\boldsymbol{x}_{i} ; \boldsymbol{\beta}\right)+\tau t_{i}+\theta \sum_{j \in N_{i}}\left(t_{j} / n\right)+\rho \sum_{j \in N_{i}}\left(p_{j} / n\right)+\varepsilon_{i}
$$

Linear probability model

The probability of infection for a given vineyard i

$$
p_{i}=b\left(\boldsymbol{x}_{i} ; \boldsymbol{\beta}\right)+\tau t_{i}+\theta \sum_{j \in N_{i}}\left(t_{j} / n\right)+\rho \sum_{j \in N_{i}}\left(p_{j} / n\right)+\varepsilon_{i}
$$

$$
\text { with: } \frac{\partial p_{i}}{\partial t_{i}}=\underbrace{\tau}_{\text {direct }}+\underbrace{(\rho / n) \theta}_{\text {first order }}+\underbrace{(\rho / n)^{2} \sum_{j \in N_{i}} \psi_{j}}_{\text {higher orders }}
$$

Micro-economic program

$$
\max _{t_{i} \in[0,1]}\left\{\mathbb{E}\left[\pi_{i}\right] \equiv\left(1-p_{i}\right) r_{i}-c \cdot t_{i}\right\}
$$

Corner solutions allow to define differentiated behaviors

Micro-economic program

$$
\max _{t_{i} \in[0,1]}\left\{\mathbb{E}\left[\pi_{i}\right] \equiv\left(1-p_{i}\right) r_{i}-c \cdot t_{i}\right\}
$$

Corner solutions allow to define differentiated behaviors
Farseeing behavior: treatment if $\frac{c}{r_{i}}<\left|\tau+(\rho / n) \theta+(\rho / n)^{2} \sum \psi_{j}\right|$
Myopic behaviour: treatment if $\frac{c}{r_{i}}<|\tau+(\rho / n) \theta|$
Naive behaviour: treatment if $\frac{c}{r_{i}}<|\tau|$

Social planner perspective

Max. expected profits simultaneously with an additional social cost

$$
\max _{\left\{t_{\ell}\right\}_{L}}\left\{\mathbb{E}[\Pi] \equiv \sum_{\ell}\left[\left(1-p_{\ell}\right) r_{\ell}-(c+\omega) t_{\ell}\right]\right\}
$$

Social planner perspective

Max. expected profits simultaneously with an additional social cost

$$
\max _{\left\{t_{\ell}\right\}_{L}}\left\{\mathbb{E}[\Pi] \equiv \sum_{\ell}\left[\left(1-p_{\ell}\right) r_{\ell}-(c+\omega) t_{\ell}\right]\right\}
$$

It is socially optimal that treated vineyards are such that:

$$
\underbrace{\frac{\omega}{r_{i}}}_{+}+\underbrace{\sum_{j \neq i} \frac{\partial p_{j}}{\partial t_{\ell}} \times \frac{r_{j}}{r_{i}}}_{-}+\frac{c}{r_{i}}<\left|\tau+(\rho / n) \theta+(\rho / n)^{2} \sum \psi_{j}\right|
$$

Simulations

Parameters β, τ, θ and ρ are estimated econometrically
Average returns estimated from vineyard prices $r_{i}=v_{i} \times(\delta-\gamma)$
Additional assumptions:

- Capitalization factor $\delta-\gamma=0.02$
- FD contamination means 5 years of production loss
- Private cost of treatment $c=25$ euros/ ha
- Social cost of treatment $\omega \in[0,300]$ euros/ ha

Outline

1 - Introduction

2 - Model
3 - Data
4 - Results
5 - Simulation
6 - Conclusion

2013-2016 contamination, compulsory treatments

\square No contamination without treatments (36.8%)
\square No contamination with treatments (47.2 \%)
\square Contamination without treatments (5.49 \%)

- Contamination with treatments (10.5 \%)

Annual returns per hectare in 2016

247874 euros

Spatial weight matrix

多

Spatial weight matrix (zoom)

Outline

1 - Introduction

2 - Model
3 - Data
4 - Results
5 - Simulation
6 - Conclusion

Spatial econometric estimation

Coef	$($ I $)$	$($ II $)$	$($ III $)$	$($ IV $)$
τ	$-0.31^{* *}$	$-0.27^{* *}$	$-0.48^{* *}$	$-0.52^{* *}$
	(0.117)	(0.093)	(0.103)	(0.094)
θ	$-0.15^{* *}$	$-0.1^{* *}$	$-0.04^{* *}$	$-0.2^{* *}$
	(0.118)	(0.094)	(0.107)	(0.094)
ρ	$+0.64^{* *}$	$+0.71^{* *}$	$+0.62^{* *}$	$+0.27^{* *}$
	(0.018)	(0.017)	(0.013)	(0.064)
N	6672	6672	6672	6672
$p r e d$	77.1	75.2	72.9	73.5
W	Contg	Dist	Contg	Contg
Method	MCMC	MCMC	AML	GMM

Proba of contamination with compulsory treatment

Proba of contamination without treatment

Expected value of treatment

Outline

$$
\begin{aligned}
& 1 \text { - Introduction } \\
& 2 \text { - Model } \\
& 3 \text { - Data } \\
& 4 \text { - Results } \\
& 5 \text { - Simulation }
\end{aligned}
$$

$$
6 \text { - Conclusion }
$$

A tax is not a solution

Spatial mismatch

Outline

1 - Introduction

2 - Model
3 - Data
4 - Results
5 - Simulation
6 - Conclusion

Summary

- Naive and myopia behaviors could be good for the environment but can be used to justify mandatory treatment
- Mandatory treatment is justified for naive behavior without social cost of treatments (on around 30% of vineyards)
- Forbidden treatment is justified for farseeing behavior with high social cost of treatment (on around 30% of vineyards)

Perspectives

- Endogenous prospecting efforts with fine-scale data
- Strategically consistent behavior, endogenous land use
- Increase the robustness checks and policy scenarios

Thank you

