Pest dispersion as a spatial interaction: The case of *Flavescence Dorée*

> Jean-Sauveur Ay INRA CESAER DIJON

> Estelle Gozlan INRA ECOPUB PARIS

WCNRM MAY 2019

1 – Introduction

- 2 Model
- 3 Data
- 4 Results
- 5 Simulation
- 6 Conclusion

Flavescence Dorée

- Bacterial disease of vines
- High quantitative loss
- No cure actually
- Mandatory vines removal, treatment against vector

Scaphoideus Titanus

Economic considerations

Two opposite externalities from treatments

Reduced risk for neighboring vineyards:
 Social benefit > Private benefit

Environmental damage on ecosystems:
 Social cost > Private cost

 \Rightarrow Strong societal debate about compulsory treatment

1 – Introduction

2 – Model

- 3 Data
- 4 Results
- 5 Simulation
- 6 Conclusion

Linear probability model

The probability of infection for a given vineyard i

$$p_i = b(oldsymbol{x}_i;oldsymbol{eta}) + au t_i + heta \sum\limits_{j \in N_i} (t_j/n) +
ho \sum\limits_{j \in N_i} (p_j/n) + arepsilon_i$$

Linear probability model

The probability of infection for a given vineyard i

$$p_i = \mathit{b}(oldsymbol{x}_i;oldsymbol{eta}) + au \mathit{t}_i + heta \sum\limits_{j \in N_i} (\mathit{t}_j/\mathit{n}) +
ho \sum\limits_{j \in N_i} (p_j/\mathit{n}) + arepsilon_i$$

Micro-economic program

$$\max_{t_i \in [0,1]} \left\{ \mathbb{E}[\pi_i] \equiv (1-p_i)r_i - c \cdot t_i
ight\}$$

Corner solutions allow to define differentiated behaviors

Micro-economic program

$$\max_{t_i \in [0,1]} \left\{ \mathbb{E}[\pi_i] \equiv (1-p_i)r_i - c \cdot t_i
ight\}$$

Corner solutions allow to define differentiated behaviors

Farseeing behavior: treatment if $\frac{c}{r_i} < | \tau + (\rho/n)\theta + (\rho/n)^2 \sum \psi_j |$ Myopic behaviour:treatment if $\frac{c}{r_i} < | \tau + (\rho/n)\theta |$ Naive behaviour:treatment if $\frac{c}{r_i} < | \tau |$

Social planner perspective

Max. expected profits simultaneously with an additional social cost

$$\max_{\{t_\ell\}_L} \left\{ \mathbb{E}ig[\Piig] \equiv \sum_\ell ig[(1-p_\ell)r_\ell - (c+\omega)t_\ellig]
ight\}$$

Social planner perspective

Max. expected profits simultaneously with an additional social cost

$$\max_{\{t_\ell\}_L} \left\{ \mathbb{E}ig[\Piig] \equiv \sum_\ell ig[(1-p_\ell)r_\ell - (c+\omega)t_\ellig]
ight\}$$

It is socially optimal that treated vineyards are such that:

$$\displaystyle \underbrace{rac{\omega}{r_i}}_{+} + \underbrace{\sum_{j
eq i} rac{\partial p_j}{\partial t_\ell} imes rac{r_j}{r_i}}_{-} + rac{c}{r_i} < \mid au + (
ho/n) heta + (
ho/n)^2 \sum \psi_j \mid$$

Simulations

Parameters β , τ , θ and ρ are estimated econometrically

Average returns estimated from vineyard prices $r_i = v_i imes (\delta - \gamma)$

Additional assumptions:

- Capitalization factor $\delta \gamma = 0.02$
- ▶ FD contamination means 5 years of production loss
- Private cost of treatment c = 25 euros/ ha
- ▶ Social cost of treatment $\omega \in [0, 300]$ euros/ ha

- 1 Introduction
- 2 Model
- 3 Data
- 4 Results
- 5 Simulation
- 6 Conclusion

2013-2016 contamination, compulsory treatments

Annual returns per hectare in 2016

Spatial weight matrix

Spatial weight matrix (zoom)

- 1 Introduction
- 2 Model
- 3 Data
- 4 Results
- 5 Simulation
- 6 Conclusion

Spatial econometric estimation

Coef	(I)	(II)	(III)	(IV)
au	-0.31^{**}	-0.27^{**}	-0.48^{**}	-0.52^{**}
	(0.117)	(0.093)	(0.103)	(0.094)
heta	-0.15^{**}	-0.1^{**}	-0.04^{**}	-0.2^{**}
	(0.118)	(0.094)	(0.107)	(0.094)
ho	$+0.64^{**}$	$+0.71^{**}$	$+0.62^{**}$	$+0.27^{**}$
	(0.018)	(0.017)	(0.013)	(0.064)
N	6672	6672	6672	6672
pred	77.1	75.2	72.9	73.5
W	Contg	Dist	Contg	Contg
Method	MCMC	MCMC	AML	GMM

Proba of contamination with compulsory treatment

Proba of contamination without treatment

Expected value of treatment

- 1 Introduction
- 2 Model
- 3 Data
- 4 Results

5 – Simulation

6 – Conclusion

A tax is not a solution

Negative externality (in euro/ha) as a tax

Spatial mismatch

Negative externality (social cost of treatment in euro/ha)

- 1 Introduction
- 2 Model
- 3 Data
- 4 Results
- 5 Simulation
- 6 Conclusion

- Naive and myopia behaviors could be good for the environment but can be used to justify mandatory treatment
- Mandatory treatment is justified for naive behavior without social cost of treatments (on around 30% of vineyards)
- Forbidden treatment is justified for farseeing behavior with high social cost of treatment (on around 30% of vineyards)

- Endogenous prospecting efforts with fine-scale data
- Strategically consistent behavior, endogenous land use
- Increase the robustness checks and policy scenarios

Thank you